Solve a linear problem using bounded variables method












0












$begingroup$


Consider the following



$$min 3x_1+4x_2\ s.t. 4x_1+3x_2ge12 \ 3x_1+4x_2le12\ x_1,x_2ge0$$



Substitute the first restriction by $x_1le3$ and solve the LP by bounded variable method.



Attempt



We first standarize and then set in a table



begin{array}{r|rrrrr|r}
& x_1 & x_2 & x_3 & x_4 & \ hline
z & -3 & -4 & 0 & 0 & & 0 \ hline
x_3 & -4 & -3 & 1 & 0 & & -12 \
x_4 & 3 & 4 & 0 & 1 & & 12
end{array}



From here we see that $theta_1=min{12/4}=3$



$theta_2=min{frac{-12-?}{-3}}=?$



and $u_2=?$



The bounded variable method requires an upper bound of $x_3$ but does not have.



How will I find $theta_2$? $u_2?$



Could someone help please?










share|cite|improve this question











$endgroup$

















    0












    $begingroup$


    Consider the following



    $$min 3x_1+4x_2\ s.t. 4x_1+3x_2ge12 \ 3x_1+4x_2le12\ x_1,x_2ge0$$



    Substitute the first restriction by $x_1le3$ and solve the LP by bounded variable method.



    Attempt



    We first standarize and then set in a table



    begin{array}{r|rrrrr|r}
    & x_1 & x_2 & x_3 & x_4 & \ hline
    z & -3 & -4 & 0 & 0 & & 0 \ hline
    x_3 & -4 & -3 & 1 & 0 & & -12 \
    x_4 & 3 & 4 & 0 & 1 & & 12
    end{array}



    From here we see that $theta_1=min{12/4}=3$



    $theta_2=min{frac{-12-?}{-3}}=?$



    and $u_2=?$



    The bounded variable method requires an upper bound of $x_3$ but does not have.



    How will I find $theta_2$? $u_2?$



    Could someone help please?










    share|cite|improve this question











    $endgroup$















      0












      0








      0





      $begingroup$


      Consider the following



      $$min 3x_1+4x_2\ s.t. 4x_1+3x_2ge12 \ 3x_1+4x_2le12\ x_1,x_2ge0$$



      Substitute the first restriction by $x_1le3$ and solve the LP by bounded variable method.



      Attempt



      We first standarize and then set in a table



      begin{array}{r|rrrrr|r}
      & x_1 & x_2 & x_3 & x_4 & \ hline
      z & -3 & -4 & 0 & 0 & & 0 \ hline
      x_3 & -4 & -3 & 1 & 0 & & -12 \
      x_4 & 3 & 4 & 0 & 1 & & 12
      end{array}



      From here we see that $theta_1=min{12/4}=3$



      $theta_2=min{frac{-12-?}{-3}}=?$



      and $u_2=?$



      The bounded variable method requires an upper bound of $x_3$ but does not have.



      How will I find $theta_2$? $u_2?$



      Could someone help please?










      share|cite|improve this question











      $endgroup$




      Consider the following



      $$min 3x_1+4x_2\ s.t. 4x_1+3x_2ge12 \ 3x_1+4x_2le12\ x_1,x_2ge0$$



      Substitute the first restriction by $x_1le3$ and solve the LP by bounded variable method.



      Attempt



      We first standarize and then set in a table



      begin{array}{r|rrrrr|r}
      & x_1 & x_2 & x_3 & x_4 & \ hline
      z & -3 & -4 & 0 & 0 & & 0 \ hline
      x_3 & -4 & -3 & 1 & 0 & & -12 \
      x_4 & 3 & 4 & 0 & 1 & & 12
      end{array}



      From here we see that $theta_1=min{12/4}=3$



      $theta_2=min{frac{-12-?}{-3}}=?$



      and $u_2=?$



      The bounded variable method requires an upper bound of $x_3$ but does not have.



      How will I find $theta_2$? $u_2?$



      Could someone help please?







      linear-programming upper-lower-bounds operations-research






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Dec 6 '18 at 2:06







      Al t.

















      asked Dec 6 '18 at 0:52









      Al t.Al t.

      4291519




      4291519






















          0






          active

          oldest

          votes











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027887%2fsolve-a-linear-problem-using-bounded-variables-method%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          0






          active

          oldest

          votes








          0






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Mathematics Stack Exchange!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          Use MathJax to format equations. MathJax reference.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3027887%2fsolve-a-linear-problem-using-bounded-variables-method%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Sphinx de Gizeh

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...