Domain of functions involving arcsine or arccosine











up vote
2
down vote

favorite












I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question









New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    2 days ago















up vote
2
down vote

favorite












I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question









New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.




















  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    2 days ago













up vote
2
down vote

favorite









up vote
2
down vote

favorite











I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...










share|cite|improve this question









New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I have two rather simple functions. I don't know how to find that the dominator is different than 0. Find the domain of functions:



Function 1:



$f(x) = frac{4-x}{arcsinfrac{x}{4}}$



Assumption 1:



$-1leq arcsinfrac{x}{4} leq 1$



$-1leq frac{x}{4} leq 1$



$-4leq x leq 4$



$xin<4;4>$



Assumption 2:



$arcsinfrac{x}{4} neq 0$



Here, I have no idea how to proceed further with assumption 2.



Function 2:



$f(x) = frac{sqrt{2x-1}}{2+arccosfrac{x+1}{4}}$



Assumption 1:



$sqrt{2x-1} geq 0$



$2x geq 1$



$x geq frac{1}{2}$



Assumption 2:



$ -1 leq arccos frac{x+1}{4} leq 1 $



$ -1 leq frac{x+1}{4} leq 1 $



$ -4 leq x + 1 leq 4 $



$ -5 leq x leq 3 $



Assumption 3:



$ 2 + arccosfrac{x+1}{4} neq 0 $



Here once again, no idea how to proceed further.



Would anyone be able to help me understand these examples, how to find that the denominator is not equal to $0$, when there's arccos or arcsin in the denominator? Thanks! I do hope my tags are okay...







functions trigonometry






share|cite|improve this question









New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 2 days ago









N. F. Taussig

42.6k93254




42.6k93254






New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 days ago









weno

303




303




New contributor




weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






weno is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.












  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    2 days ago


















  • Use en.wikipedia.org/wiki/…
    – lab bhattacharjee
    2 days ago
















Use en.wikipedia.org/wiki/…
– lab bhattacharjee
2 days ago




Use en.wikipedia.org/wiki/…
– lab bhattacharjee
2 days ago










1 Answer
1






active

oldest

votes

















up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    2 days ago










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    yesterday






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    yesterday











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






weno is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007759%2fdomain-of-functions-involving-arcsine-or-arccosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    2 days ago










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    yesterday






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    yesterday















up vote
0
down vote













For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer



















  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    2 days ago










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    yesterday






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    yesterday













up vote
0
down vote










up vote
0
down vote









For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$






share|cite|improve this answer














For the first function, the fraction is defined when $arcsin frac{x}{4} ne 0 implies frac{x}{4} ne sin 0=0 implies xne 0$



So the domain of the first function is $[-4,4]-{0}$



For the second function $$2+arccos frac{x+1}{4} ne 0$$
$$implies arccos frac{x+1}{4} ne -2$$
Apply cos both sides,
$$implies frac{x+1}{4} ne cos(-2)$$
$$implies x ne 4cos(-2) -1$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 23 hours ago

























answered 2 days ago









Fareed AF

31411




31411








  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    2 days ago










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    yesterday






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    yesterday














  • 2




    But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
    – Lubin
    2 days ago










  • The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
    – N. F. Taussig
    yesterday






  • 1




    Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
    – N. F. Taussig
    yesterday








2




2




But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
– Lubin
2 days ago




But since $arcsin$ is defined only on the closed interval $[-1,1]$, the denominator in #1 is defined only on the closed interval $[-4,4]$. Outside of that interval, the whole is undefined.
– Lubin
2 days ago












The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
– N. F. Taussig
yesterday




The range of $arccos x$ is $[0, pi]$. Hence, the range of $2 + arccosleft(frac{x + 1}{4}right)$ is $[2, 2 + pi]$.
– N. F. Taussig
yesterday




1




1




Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
– N. F. Taussig
yesterday




Type $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, $arctan x$ to produce $sin x$, $cos x$, $tan x$, $csc x$, $sec x$, $cot x$, $arcsin x$, $arccos x$, and $arctan x$, respectively.
– N. F. Taussig
yesterday










weno is a new contributor. Be nice, and check out our Code of Conduct.










 

draft saved


draft discarded


















weno is a new contributor. Be nice, and check out our Code of Conduct.













weno is a new contributor. Be nice, and check out our Code of Conduct.












weno is a new contributor. Be nice, and check out our Code of Conduct.















 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007759%2fdomain-of-functions-involving-arcsine-or-arccosine%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh