Homogeneous polynomial on unit sphere.











up vote
0
down vote

favorite













Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:



$(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;



$(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$



Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.



Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.




The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.










share|cite|improve this question


























    up vote
    0
    down vote

    favorite













    Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:



    $(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;



    $(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$



    Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.



    Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.




    The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.










    share|cite|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite












      Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:



      $(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;



      $(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$



      Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.



      Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.




      The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.










      share|cite|improve this question














      Suppose $ F $ is a homogeneous polynomial function of degree $ m $ on Euclidean space $ mathbb{R}^{n+1} $. Restrict $ F $ to the unit sphere $ S^n $ and we get a function on $ S^n $ denoted by $ f $, prove:



      $(1)$ $ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 $;



      $(2)$ $ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-m(m-1)f-mnf .$



      Where $ nabla_{S^n}, nabla_{mathbb{R}^{n+1}} $ are gradients on $ S^n $ and $ mathbb{R}^{n+1} $ respectively, $ Delta_{S^n}, Delta_{mathbb{R}^{n+1}} $ are Laplace operators on $ S^n $ and $ mathbb{R}^{n+1} $ respectively.



      Hint: Use Euler's homogeneous function theorem $ langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle=mF(z) $.




      The question above comes from my Riemannian geometry textbook. Can someone give me a hint about how to deal with $ nabla_{S^n}f $ ? I can't find any direct relation between $ nabla_{S^n}f $ and $ nabla_{mathbb{R}^{n+1}}F $. Though we can use local coordinates to expand $ nabla_{S^n}f $ and compute directly, I am still looking forward to a more elegant way to do this.







      differential-geometry riemannian-geometry






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      Philip

      1,048315




      1,048315






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?



          Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
          $$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$



          for all $v in T_pN$.



          In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition



          $$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$



          where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,



          $$ P(v) = v - left<v, p right>p $$



          and so



          $$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
          | (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$



          This handles the first part. I'll leave the second part to you.






          share|cite|improve this answer




























            up vote
            0
            down vote














            Thanks levap for the nice answer, here is what I did based on the hint given by levap:




            $(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
            $$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
            where $ tilde{X}=X $ on $ S^n $.



            Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
            which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$



            $(2)$ We have
            begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
            &=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
            &=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
            &=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
            &=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
            &=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
            &=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
            &=Delta_{S^n}f+mfn+mz(F(z))\
            &=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
            &=Delta_{S^n}f+mnf+mmf .
            end{align*}

            Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$




            Edit:



            To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
            begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
            &=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
            &=0 .
            end{align*}



            Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $






            share|cite|improve this answer



















            • 1




              I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
              – levap
              yesterday












            • Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
              – Philip
              yesterday













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007724%2fhomogeneous-polynomial-on-unit-sphere%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            1
            down vote



            accepted










            Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?



            Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
            $$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$



            for all $v in T_pN$.



            In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition



            $$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$



            where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,



            $$ P(v) = v - left<v, p right>p $$



            and so



            $$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
            | (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$



            This handles the first part. I'll leave the second part to you.






            share|cite|improve this answer

























              up vote
              1
              down vote



              accepted










              Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?



              Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
              $$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$



              for all $v in T_pN$.



              In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition



              $$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$



              where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,



              $$ P(v) = v - left<v, p right>p $$



              and so



              $$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
              | (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$



              This handles the first part. I'll leave the second part to you.






              share|cite|improve this answer























                up vote
                1
                down vote



                accepted







                up vote
                1
                down vote



                accepted






                Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?



                Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
                $$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$



                for all $v in T_pN$.



                In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition



                $$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$



                where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,



                $$ P(v) = v - left<v, p right>p $$



                and so



                $$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
                | (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$



                This handles the first part. I'll leave the second part to you.






                share|cite|improve this answer












                Assume we have a Riemannian manifold $(M,g)$ and a submanifold $N subseteq M$. Denote by $h$ the induced Riemannian metric on $N$ (the pullback of $g$ under the inclusion map $i colon N hookrightarrow M$). Given a smooth function $F colon M rightarrow mathbb{R}$, we can consider $f = F|_{N}$ which is a smooth function on $N$. Given $p in N$, what is the relation between $(nabla_M F)(p)$ and $(nabla_N f)(p)$?



                Denote by $P colon T_pM rightarrow T_p N$ the orthogonal projection onto $N$. Then $(nabla_N f)(p) = P((nabla_M F)(p))$ because
                $$ df|_p(v) = d(F circ i)|_p(v) = dF|_p(di|_p(v)) = left< (nabla_M F)(p), di|_p(v) right>_g = left< di|_p left( P((nabla_M F)(p)) right), di|_p(v) right>_g = left< P((nabla_M F)(p)), v right>_h $$



                for all $v in T_pN$.



                In your case, $M = mathbb{R}^{n+1}$ with the standard Euclidean metric and $N = S^n$ has codimension one. In addition, given $p in S^n$, we have the orthogonal direct sum decomposition



                $$ T_p(M) = T_p(S^{n}) oplus operatorname{span}_{mathbb{R}} { p } $$



                where we think of $p$ both as a point in $mathbb{R}^{n+1}$ and a tangent vector at $T_p(mathbb{R}^{n+1})$. Hence,



                $$ P(v) = v - left<v, p right>p $$



                and so



                $$ (nabla_{S^n} f)(p) = (nabla_{mathbb{R}^{n+1}} F)(p) - left< (nabla_{mathbb{R}^{n+1}} F)(p), p right> p, \
                | (nabla_{mathbb{R}^{n+1}} F)(p) |^2 = | (nabla_{S^n} f)(p) |^2 + left| left< nabla_{mathbb{R}^{n+1}} F)(p), p right> right|^2 = | (nabla_{S^n} f)(p) |^2 + m^2 |f(p)|^2.$$



                This handles the first part. I'll leave the second part to you.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 days ago









                levap

                46.5k23273




                46.5k23273






















                    up vote
                    0
                    down vote














                    Thanks levap for the nice answer, here is what I did based on the hint given by levap:




                    $(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
                    $$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
                    where $ tilde{X}=X $ on $ S^n $.



                    Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
                    which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$



                    $(2)$ We have
                    begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
                    &=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
                    &=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
                    &=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
                    &=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
                    &=Delta_{S^n}f+mfn+mz(F(z))\
                    &=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
                    &=Delta_{S^n}f+mnf+mmf .
                    end{align*}

                    Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$




                    Edit:



                    To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
                    begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
                    &=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
                    &=0 .
                    end{align*}



                    Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $






                    share|cite|improve this answer



















                    • 1




                      I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                      – levap
                      yesterday












                    • Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                      – Philip
                      yesterday

















                    up vote
                    0
                    down vote














                    Thanks levap for the nice answer, here is what I did based on the hint given by levap:




                    $(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
                    $$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
                    where $ tilde{X}=X $ on $ S^n $.



                    Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
                    which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$



                    $(2)$ We have
                    begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
                    &=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
                    &=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
                    &=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
                    &=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
                    &=Delta_{S^n}f+mfn+mz(F(z))\
                    &=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
                    &=Delta_{S^n}f+mnf+mmf .
                    end{align*}

                    Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$




                    Edit:



                    To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
                    begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
                    &=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
                    &=0 .
                    end{align*}



                    Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $






                    share|cite|improve this answer



















                    • 1




                      I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                      – levap
                      yesterday












                    • Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                      – Philip
                      yesterday















                    up vote
                    0
                    down vote










                    up vote
                    0
                    down vote










                    Thanks levap for the nice answer, here is what I did based on the hint given by levap:




                    $(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
                    $$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
                    where $ tilde{X}=X $ on $ S^n $.



                    Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
                    which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$



                    $(2)$ We have
                    begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
                    &=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
                    &=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
                    &=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
                    &=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
                    &=Delta_{S^n}f+mfn+mz(F(z))\
                    &=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
                    &=Delta_{S^n}f+mnf+mmf .
                    end{align*}

                    Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$




                    Edit:



                    To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
                    begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
                    &=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
                    &=0 .
                    end{align*}



                    Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $






                    share|cite|improve this answer















                    Thanks levap for the nice answer, here is what I did based on the hint given by levap:




                    $(1)$ Seeing that $ langle nabla_{S^n}f, X rangle=X(f) $ where $ Xin mathfrak{X}(S^n) $ by the definition of gradient. Now we play the trick that $ X(f)=operatorname{d}f(X)=operatorname{d}(Fcirc i)(X) $ where $ i $ is the inclusion map $ i: S^nhookrightarrow mathbb{R}^{n+1} $. And
                    $$ operatorname{d}(Fcirc i)(X)=operatorname{d}(F)circoperatorname{d}(i)(X)=operatorname{d}F(tilde{X})=tilde{X}(F)=langle nabla_{mathbb{R}^{n+1}}F, tilde{X} rangle=langle (nabla_{mathbb{R}^{n+1}}F)^{T}, Xrangle $$
                    where $ tilde{X}=X $ on $ S^n $.



                    Hence we have $ nabla_{S^n}f=(nabla_{mathbb{R}^{n+1}}F)^{T} $. Therefore, $$|nabla_{mathbb{R}^{n+1}}F|^2=|nabla_{S^n}f|^2+|(nabla_{mathbb{R}^{n+1}}F)^{perp}|^2=|nabla_{S^n}f|^2+langle (nabla_{mathbb{R}^{n+1}}F)_z, z rangle^2=|nabla_{S^n}f|^2+m^2F^2(z) $$ where $ zin S^n $
                    which is the same as $$ |nabla_{S^n}f|^2=|nabla_{mathbb{R}^{n+1}}F|^2-m^2f^2 .$$



                    $(2)$ We have
                    begin{align*} Delta_{mathbb{R}^{n+1}}F&=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)\
                    &=operatorname{div}left((nabla_{mathbb{R}^{n+1}}F)^{T}+(nabla_{mathbb{R}^{n+1}}F)^{perp}right)\
                    &=operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{perp}\
                    &=Delta_{S^n}f+operatorname{div}(langle nabla_{mathbb{R}^{n+1}}F,z rangle z)\
                    &=Delta_{S^n}f+langle nabla_{mathbb{R}^{n+1}}F,z rangleoperatorname{div}(z)+z(langle nabla_{mathbb{R}^{n+1}}F, z rangle )\
                    &=Delta_{S^n}f+mfoperatorname{div}(z)+z(mF(z))\
                    &=Delta_{S^n}f+mfn+mz(F(z))\
                    &=Delta_{S^n}f+mnf+mlangle nabla_{mathbb{R}^{n+1}}F, z rangle\
                    &=Delta_{S^n}f+mnf+mmf .
                    end{align*}

                    Hence $$ Delta_{S^n}f=Delta_{mathbb{R}^{n+1}}F-mmf-mnf .$$




                    Edit:



                    To be perfectly clear, we need to prove the fact that $ operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}=Delta_{S^n}f=operatorname{div}(nabla_{S^n}f) $. If we pick local orthogonal coordinates $ { E_i }_{i=1}^{n+1} $ at $ zinmathbb{R}^{n+1} $ such that $ E_{n+1}=z $ and $ { E_i }_{i=1}^n $ is naturally local orthogonal coordinates at $ z $ restricted to the unit sphere $ S^n $. Since $(nabla_{mathbb{R}^{n+1}}F)^{T} $ is perpendicular to $ z $, then by the definition of divergence,
                    begin{align*} operatorname{div}(nabla_{mathbb{R}^{n+1}}F)^{T}-operatorname{div}(nabla_{S^n}f)&=sum_{i=1}^{n+1}langle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_i rangle-sum_{i=1}^nlangle nabla_{E_i}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_irangle \
                    &=langle nabla_{E_{n+1}}(nabla_{mathbb{R}^{n+1}}F)^{T}, E_{n+1}rangle\
                    &=0 .
                    end{align*}



                    Another note for $ operatorname{div}(z)=0 $. Since in Euclidean space $ mathbb{R}^{n+1} $, $ z=(x_1, x_2,..., x_n, sqrt{1-sum_{i=1}^nx_i^2}) $ and $ operatorname{div}(z)=sum_{i=1}^{n}frac{partial x_i}{partial x_i}+frac{partial sqrt{1-sum_{i=1}^nx_i^2}}{partial x_{n+1}}=sum_{i=1}^n1+0=n. $







                    share|cite|improve this answer














                    share|cite|improve this answer



                    share|cite|improve this answer








                    edited 23 hours ago

























                    answered yesterday









                    Philip

                    1,048315




                    1,048315








                    • 1




                      I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                      – levap
                      yesterday












                    • Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                      – Philip
                      yesterday
















                    • 1




                      I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                      – levap
                      yesterday












                    • Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                      – Philip
                      yesterday










                    1




                    1




                    I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                    – levap
                    yesterday






                    I think your final result is correct (this is consistent with the formula on Wikipedia) and that the question in your book has a typo. However, in $(2)$, you must justify certain things to make your argument rigorous. For example, you use the fact that $operatorname{div}_{mathbb{R}^{n+1}} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right) = operatorname{div}_{S^n} left( left( nabla_{mathbb{R}^{n+1}} F right)^T right)$ to replace the first expression with $Delta_{S^n} f$ and you need to justify it.
                    – levap
                    yesterday














                    Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                    – Philip
                    yesterday






                    Thank you so much!!!!! I have edited the post to justify the fact that $ operatorname{div}_{mathbb{R}^{n+1}}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right)=operatorname{div}_{S^n}left( (nabla_{mathbb{R}^{n+1}}F)^{T} right) $
                    – Philip
                    yesterday




















                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007724%2fhomogeneous-polynomial-on-unit-sphere%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Berounka

                    Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                    Sphinx de Gizeh