Find the joint distribution with 2 discrete random variables











up vote
2
down vote

favorite












How do you find the following joint distribution P(X=r, Y=k)? So far I have gotten:



P(X=0, Y=0) = (0.4)(0.8) = 0.32



P(X=1, Y=1) = (1-0.4)(0.9) = 0.54



How do I go on to find P(X=0, Y=1)and P(X=1, Y=0)?



enter image description here










share|cite|improve this question


























    up vote
    2
    down vote

    favorite












    How do you find the following joint distribution P(X=r, Y=k)? So far I have gotten:



    P(X=0, Y=0) = (0.4)(0.8) = 0.32



    P(X=1, Y=1) = (1-0.4)(0.9) = 0.54



    How do I go on to find P(X=0, Y=1)and P(X=1, Y=0)?



    enter image description here










    share|cite|improve this question
























      up vote
      2
      down vote

      favorite









      up vote
      2
      down vote

      favorite











      How do you find the following joint distribution P(X=r, Y=k)? So far I have gotten:



      P(X=0, Y=0) = (0.4)(0.8) = 0.32



      P(X=1, Y=1) = (1-0.4)(0.9) = 0.54



      How do I go on to find P(X=0, Y=1)and P(X=1, Y=0)?



      enter image description here










      share|cite|improve this question













      How do you find the following joint distribution P(X=r, Y=k)? So far I have gotten:



      P(X=0, Y=0) = (0.4)(0.8) = 0.32



      P(X=1, Y=1) = (1-0.4)(0.9) = 0.54



      How do I go on to find P(X=0, Y=1)and P(X=1, Y=0)?



      enter image description here







      probability probability-theory probability-distributions






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 2 days ago









      Yolanda Hui

      13710




      13710






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          1
          down vote



          accepted










          Hint:



          $P(X=0,Y=1)+P(X=0,Y=0)=P(X=0)$






          share|cite|improve this answer





















          • Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
            – Yolanda Hui
            2 days ago










          • Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
            – drhab
            2 days ago












          • How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
            – Yolanda Hui
            2 days ago












          • $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
            – drhab
            2 days ago










          • P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
            – Yolanda Hui
            2 days ago













          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "69"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          noCode: true, onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007777%2ffind-the-joint-distribution-with-2-discrete-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          1
          down vote



          accepted










          Hint:



          $P(X=0,Y=1)+P(X=0,Y=0)=P(X=0)$






          share|cite|improve this answer





















          • Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
            – Yolanda Hui
            2 days ago










          • Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
            – drhab
            2 days ago












          • How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
            – Yolanda Hui
            2 days ago












          • $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
            – drhab
            2 days ago










          • P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
            – Yolanda Hui
            2 days ago

















          up vote
          1
          down vote



          accepted










          Hint:



          $P(X=0,Y=1)+P(X=0,Y=0)=P(X=0)$






          share|cite|improve this answer





















          • Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
            – Yolanda Hui
            2 days ago










          • Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
            – drhab
            2 days ago












          • How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
            – Yolanda Hui
            2 days ago












          • $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
            – drhab
            2 days ago










          • P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
            – Yolanda Hui
            2 days ago















          up vote
          1
          down vote



          accepted







          up vote
          1
          down vote



          accepted






          Hint:



          $P(X=0,Y=1)+P(X=0,Y=0)=P(X=0)$






          share|cite|improve this answer












          Hint:



          $P(X=0,Y=1)+P(X=0,Y=0)=P(X=0)$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 2 days ago









          drhab

          94.6k543125




          94.6k543125












          • Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
            – Yolanda Hui
            2 days ago










          • Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
            – drhab
            2 days ago












          • How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
            – Yolanda Hui
            2 days ago












          • $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
            – drhab
            2 days ago










          • P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
            – Yolanda Hui
            2 days ago




















          • Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
            – Yolanda Hui
            2 days ago










          • Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
            – drhab
            2 days ago












          • How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
            – Yolanda Hui
            2 days ago












          • $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
            – drhab
            2 days ago










          • P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
            – Yolanda Hui
            2 days ago


















          Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
          – Yolanda Hui
          2 days ago




          Then P(X=1,Y=0) + P(X=1,Y=1) = P(X=1)? Are my calculations for P(X=0, Y=0) and P(X=1, Y=1) correct also? Thanks.
          – Yolanda Hui
          2 days ago












          Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
          – drhab
          2 days ago






          Your calculations are correct. If you have found $P(X=0,Y=1)$ then you can find $P(X=1,Y=0)$ also. This by means of $P(X=0,Y=0)+P(X=0,Y=1)+P(X=1,Y=0)+P(X=1,Y=1)=1$. (Or the method you propose yourself).
          – drhab
          2 days ago














          How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
          – Yolanda Hui
          2 days ago






          How do I find P(Y=0) so I can use P(X=0,Y=0) = P(X=0) x P(Y=0) to see if X and Y are independent?
          – Yolanda Hui
          2 days ago














          $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
          – drhab
          2 days ago




          $P(Y=0)=P(X=0,Y=0)+P(X=1,Y=0)$.
          – drhab
          2 days ago












          P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
          – Yolanda Hui
          2 days ago






          P(Y=0) = 0.32 + 0.06 = 0.38, P(X=0) x P(Y=0)= 0.4 x 0.38 = 0.152, P(X=0,Y=0) = 0.32. They aren't equal, so X and Y are not independent.
          – Yolanda Hui
          2 days ago




















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007777%2ffind-the-joint-distribution-with-2-discrete-random-variables%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Berounka

          Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

          Sphinx de Gizeh