Show that $|{|2overline{z}+5 |(sqrt2 - i)} | = sqrt3 |2z+5|$, where z is a complex number.











up vote
-1
down vote

favorite












Show that $|{|2overline{z}+5 |(sqrt2 - i)} | = sqrt3 |2z+5|$, where z is a complex number.



And $overline{z}$ is complex conjugate of $z$.



And $i$ is iota.



I'm proceeding by considering $z=x+iy$



But I just get stuck at different results approaching different ways.
Please help.










share|cite|improve this question






















  • |ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
    – Peter Szilas
    2 days ago












  • @PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
    – Kaustuv Sawarn
    2 days ago












  • Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
    – Peter Szilas
    2 days ago












  • @PeterSzilas yes. I got it. Thanks!
    – Kaustuv Sawarn
    2 days ago










  • Kaustuv.Welcome:)
    – Peter Szilas
    2 days ago















up vote
-1
down vote

favorite












Show that $|{|2overline{z}+5 |(sqrt2 - i)} | = sqrt3 |2z+5|$, where z is a complex number.



And $overline{z}$ is complex conjugate of $z$.



And $i$ is iota.



I'm proceeding by considering $z=x+iy$



But I just get stuck at different results approaching different ways.
Please help.










share|cite|improve this question






















  • |ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
    – Peter Szilas
    2 days ago












  • @PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
    – Kaustuv Sawarn
    2 days ago












  • Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
    – Peter Szilas
    2 days ago












  • @PeterSzilas yes. I got it. Thanks!
    – Kaustuv Sawarn
    2 days ago










  • Kaustuv.Welcome:)
    – Peter Szilas
    2 days ago













up vote
-1
down vote

favorite









up vote
-1
down vote

favorite











Show that $|{|2overline{z}+5 |(sqrt2 - i)} | = sqrt3 |2z+5|$, where z is a complex number.



And $overline{z}$ is complex conjugate of $z$.



And $i$ is iota.



I'm proceeding by considering $z=x+iy$



But I just get stuck at different results approaching different ways.
Please help.










share|cite|improve this question













Show that $|{|2overline{z}+5 |(sqrt2 - i)} | = sqrt3 |2z+5|$, where z is a complex number.



And $overline{z}$ is complex conjugate of $z$.



And $i$ is iota.



I'm proceeding by considering $z=x+iy$



But I just get stuck at different results approaching different ways.
Please help.







complex-analysis complex-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 2 days ago









Kaustuv Sawarn

515




515












  • |ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
    – Peter Szilas
    2 days ago












  • @PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
    – Kaustuv Sawarn
    2 days ago












  • Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
    – Peter Szilas
    2 days ago












  • @PeterSzilas yes. I got it. Thanks!
    – Kaustuv Sawarn
    2 days ago










  • Kaustuv.Welcome:)
    – Peter Szilas
    2 days ago


















  • |ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
    – Peter Szilas
    2 days ago












  • @PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
    – Kaustuv Sawarn
    2 days ago












  • Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
    – Peter Szilas
    2 days ago












  • @PeterSzilas yes. I got it. Thanks!
    – Kaustuv Sawarn
    2 days ago










  • Kaustuv.Welcome:)
    – Peter Szilas
    2 days ago
















|ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
– Peter Szilas
2 days ago






|ab|= |a||b|, a,b complex.LHS: $√3|2overline{z}+5|$.Then $|a|=|overline{a}|$.Helps?
– Peter Szilas
2 days ago














@PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
– Kaustuv Sawarn
2 days ago






@PeterSzilas I didn't understand, how can you bring LHS as $sqrt3|2overline{z}+5|$ . I mean how did you proceed with the LHS to get that!?
– Kaustuv Sawarn
2 days ago














Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
– Peter Szilas
2 days ago






Kaustuv.$|√2-i|=sqrt{(√2)^2+i^2}=sqrt{4-1} =√3.$Ok?
– Peter Szilas
2 days ago














@PeterSzilas yes. I got it. Thanks!
– Kaustuv Sawarn
2 days ago




@PeterSzilas yes. I got it. Thanks!
– Kaustuv Sawarn
2 days ago












Kaustuv.Welcome:)
– Peter Szilas
2 days ago




Kaustuv.Welcome:)
– Peter Szilas
2 days ago










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










LHS is $||2overline{z}+5|cdot(sqrt2 - i)|$; and $a=|2overline{z}+5| geq 0$. Then
$$||2overline{z}+5|cdot(sqrt2 - i)|=|acdot(sqrt2 - i)|=|a|cdot|sqrt2 - i|\=sqrt3 cdot a=sqrt3 cdot |2overline{z}+5|=sqrt3 cdot |overline{2z+5}|$$






share|cite|improve this answer























  • I think this is a silly question but how is $|sqrt2-i| = sqrt3$
    – Kaustuv Sawarn
    2 days ago












  • $|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
    – Naweed Seldon
    2 days ago












  • haha, damn. I didn't even think like that! Thankyou very much!!
    – Kaustuv Sawarn
    2 days ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007745%2fshow-that-2-overlinez5-sqrt2-i-sqrt3-2z5-where-z-is-a-co%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










LHS is $||2overline{z}+5|cdot(sqrt2 - i)|$; and $a=|2overline{z}+5| geq 0$. Then
$$||2overline{z}+5|cdot(sqrt2 - i)|=|acdot(sqrt2 - i)|=|a|cdot|sqrt2 - i|\=sqrt3 cdot a=sqrt3 cdot |2overline{z}+5|=sqrt3 cdot |overline{2z+5}|$$






share|cite|improve this answer























  • I think this is a silly question but how is $|sqrt2-i| = sqrt3$
    – Kaustuv Sawarn
    2 days ago












  • $|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
    – Naweed Seldon
    2 days ago












  • haha, damn. I didn't even think like that! Thankyou very much!!
    – Kaustuv Sawarn
    2 days ago















up vote
1
down vote



accepted










LHS is $||2overline{z}+5|cdot(sqrt2 - i)|$; and $a=|2overline{z}+5| geq 0$. Then
$$||2overline{z}+5|cdot(sqrt2 - i)|=|acdot(sqrt2 - i)|=|a|cdot|sqrt2 - i|\=sqrt3 cdot a=sqrt3 cdot |2overline{z}+5|=sqrt3 cdot |overline{2z+5}|$$






share|cite|improve this answer























  • I think this is a silly question but how is $|sqrt2-i| = sqrt3$
    – Kaustuv Sawarn
    2 days ago












  • $|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
    – Naweed Seldon
    2 days ago












  • haha, damn. I didn't even think like that! Thankyou very much!!
    – Kaustuv Sawarn
    2 days ago













up vote
1
down vote



accepted







up vote
1
down vote



accepted






LHS is $||2overline{z}+5|cdot(sqrt2 - i)|$; and $a=|2overline{z}+5| geq 0$. Then
$$||2overline{z}+5|cdot(sqrt2 - i)|=|acdot(sqrt2 - i)|=|a|cdot|sqrt2 - i|\=sqrt3 cdot a=sqrt3 cdot |2overline{z}+5|=sqrt3 cdot |overline{2z+5}|$$






share|cite|improve this answer














LHS is $||2overline{z}+5|cdot(sqrt2 - i)|$; and $a=|2overline{z}+5| geq 0$. Then
$$||2overline{z}+5|cdot(sqrt2 - i)|=|acdot(sqrt2 - i)|=|a|cdot|sqrt2 - i|\=sqrt3 cdot a=sqrt3 cdot |2overline{z}+5|=sqrt3 cdot |overline{2z+5}|$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered 2 days ago









Naweed Seldon

1,212319




1,212319












  • I think this is a silly question but how is $|sqrt2-i| = sqrt3$
    – Kaustuv Sawarn
    2 days ago












  • $|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
    – Naweed Seldon
    2 days ago












  • haha, damn. I didn't even think like that! Thankyou very much!!
    – Kaustuv Sawarn
    2 days ago


















  • I think this is a silly question but how is $|sqrt2-i| = sqrt3$
    – Kaustuv Sawarn
    2 days ago












  • $|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
    – Naweed Seldon
    2 days ago












  • haha, damn. I didn't even think like that! Thankyou very much!!
    – Kaustuv Sawarn
    2 days ago
















I think this is a silly question but how is $|sqrt2-i| = sqrt3$
– Kaustuv Sawarn
2 days ago






I think this is a silly question but how is $|sqrt2-i| = sqrt3$
– Kaustuv Sawarn
2 days ago














$|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
– Naweed Seldon
2 days ago






$|a+ib| = sqrt{a^2 + b^2}$, where $z = a+ib$. In this case, $a = sqrt2, b = -1$
– Naweed Seldon
2 days ago














haha, damn. I didn't even think like that! Thankyou very much!!
– Kaustuv Sawarn
2 days ago




haha, damn. I didn't even think like that! Thankyou very much!!
– Kaustuv Sawarn
2 days ago


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007745%2fshow-that-2-overlinez5-sqrt2-i-sqrt3-2z5-where-z-is-a-co%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Sphinx de Gizeh

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...