Summation over multiple arguments











up vote
0
down vote

favorite












This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:



$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$



(it's the Ising model for 3 lattice sites).



I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.



(I know you can simplify it and end up with a much nicer expression in terms of cosh)



Help! Thanks.










share|cite|improve this question




























    up vote
    0
    down vote

    favorite












    This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:



    $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$



    (it's the Ising model for 3 lattice sites).



    I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.



    (I know you can simplify it and end up with a much nicer expression in terms of cosh)



    Help! Thanks.










    share|cite|improve this question


























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:



      $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$



      (it's the Ising model for 3 lattice sites).



      I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.



      (I know you can simplify it and end up with a much nicer expression in terms of cosh)



      Help! Thanks.










      share|cite|improve this question















      This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:



      $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$



      (it's the Ising model for 3 lattice sites).



      I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.



      (I know you can simplify it and end up with a much nicer expression in terms of cosh)



      Help! Thanks.







      summation exponential-sum






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 days ago









      Jean-Claude Arbaut

      14.6k63362




      14.6k63362










      asked 2 days ago









      Learn4life

      906




      906






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote



          accepted










          Proceeding from right to left:



          $$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
          &=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
          &=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
          &=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
          &=2[e^{{-1}}+e^{1}]^2\
          &=4(cosh(2)+1)
          end{align*}$$






          share|cite|improve this answer






























            up vote
            0
            down vote













            A slightly alternate approach than in the other answer (dividing up the sum differently):



            Starting with the inside sum of
            $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
            we can factor out the term that doesn't depend on $s_3$ to get
            $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
            sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
            $$

            Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
            $$
            sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
            sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
            $$

            By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
            $$
            (e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
            $$

            Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.






            share|cite|improve this answer





















              Your Answer





              StackExchange.ifUsing("editor", function () {
              return StackExchange.using("mathjaxEditing", function () {
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              });
              });
              }, "mathjax-editing");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "69"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              noCode: true, onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














               

              draft saved


              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007721%2fsummation-over-multiple-arguments%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              4
              down vote



              accepted










              Proceeding from right to left:



              $$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
              &=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
              &=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
              &=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
              &=2[e^{{-1}}+e^{1}]^2\
              &=4(cosh(2)+1)
              end{align*}$$






              share|cite|improve this answer



























                up vote
                4
                down vote



                accepted










                Proceeding from right to left:



                $$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
                &=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
                &=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
                &=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
                &=2[e^{{-1}}+e^{1}]^2\
                &=4(cosh(2)+1)
                end{align*}$$






                share|cite|improve this answer

























                  up vote
                  4
                  down vote



                  accepted







                  up vote
                  4
                  down vote



                  accepted






                  Proceeding from right to left:



                  $$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
                  &=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
                  &=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
                  &=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
                  &=2[e^{{-1}}+e^{1}]^2\
                  &=4(cosh(2)+1)
                  end{align*}$$






                  share|cite|improve this answer














                  Proceeding from right to left:



                  $$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
                  &=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
                  &=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
                  &=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
                  &=2[e^{{-1}}+e^{1}]^2\
                  &=4(cosh(2)+1)
                  end{align*}$$







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 2 days ago

























                  answered 2 days ago









                  smcc

                  4,257517




                  4,257517






















                      up vote
                      0
                      down vote













                      A slightly alternate approach than in the other answer (dividing up the sum differently):



                      Starting with the inside sum of
                      $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
                      we can factor out the term that doesn't depend on $s_3$ to get
                      $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
                      sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
                      $$

                      Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
                      $$
                      sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
                      sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
                      $$

                      By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
                      $$
                      (e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
                      $$

                      Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.






                      share|cite|improve this answer

























                        up vote
                        0
                        down vote













                        A slightly alternate approach than in the other answer (dividing up the sum differently):



                        Starting with the inside sum of
                        $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
                        we can factor out the term that doesn't depend on $s_3$ to get
                        $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
                        sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
                        $$

                        Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
                        $$
                        sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
                        sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
                        $$

                        By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
                        $$
                        (e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
                        $$

                        Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.






                        share|cite|improve this answer























                          up vote
                          0
                          down vote










                          up vote
                          0
                          down vote









                          A slightly alternate approach than in the other answer (dividing up the sum differently):



                          Starting with the inside sum of
                          $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
                          we can factor out the term that doesn't depend on $s_3$ to get
                          $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
                          $$

                          Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
                          $$
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
                          $$

                          By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
                          $$
                          (e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
                          $$

                          Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.






                          share|cite|improve this answer












                          A slightly alternate approach than in the other answer (dividing up the sum differently):



                          Starting with the inside sum of
                          $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
                          we can factor out the term that doesn't depend on $s_3$ to get
                          $$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
                          $$

                          Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
                          $$
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
                          sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
                          $$

                          By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
                          $$
                          (e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
                          $$

                          Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.







                          share|cite|improve this answer












                          share|cite|improve this answer



                          share|cite|improve this answer










                          answered 2 days ago









                          Michael Burr

                          26.3k23262




                          26.3k23262






























                               

                              draft saved


                              draft discarded



















































                               


                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007721%2fsummation-over-multiple-arguments%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Berounka

                              Sphinx de Gizeh

                              Different font size/position of beamer's navigation symbols template's content depending on regular/plain...