Summation over multiple arguments
up vote
0
down vote
favorite
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
add a comment |
up vote
0
down vote
favorite
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
This might seem stupid, but I'm really stuck. I don't understand how to calculate the following explicitly:
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}$$
(it's the Ising model for 3 lattice sites).
I don't understand how I can calculate this in a brute force way, since the sums for $s_1$ and $s_3$ only apply to one part of the equation to be summed over.
(I know you can simplify it and end up with a much nicer expression in terms of cosh)
Help! Thanks.
summation exponential-sum
summation exponential-sum
edited 2 days ago
Jean-Claude Arbaut
14.6k63362
14.6k63362
asked 2 days ago
Learn4life
906
906
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
accepted
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
up vote
0
down vote
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
up vote
4
down vote
accepted
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
add a comment |
up vote
4
down vote
accepted
up vote
4
down vote
accepted
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
Proceeding from right to left:
$$begin{align*}sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}& =sum_{s_1=pm1} sum_{s_2=pm1}e^{-{s_1s_2}}left[ e^{{s_2}}+e^{-{s_2}} right]\
&=sum_{s_1=pm1}left( e^{{s_1}}left[ e^{{-1}}+e^{1} right]+e^{-{s_1}}left[ e^{1}+e^{-{1}} right]right)\
&=sum_{s_1=pm1}left( [e^{{s_1}}+e^{-{s_1}}]left[ e^{{-1}}+e^{1} right]right)\
&=[e^{{-1}}+e^{1}]left[ e^{{-1}}+e^{1} right]+[e^{{1}}+e^{-1}]left[ e^{{-1}}+e^{1} right]\
&=2[e^{{-1}}+e^{1}]^2\
&=4(cosh(2)+1)
end{align*}$$
edited 2 days ago
answered 2 days ago
smcc
4,257517
4,257517
add a comment |
add a comment |
up vote
0
down vote
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
up vote
0
down vote
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
add a comment |
up vote
0
down vote
up vote
0
down vote
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
A slightly alternate approach than in the other answer (dividing up the sum differently):
Starting with the inside sum of
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}},$$
we can factor out the term that doesn't depend on $s_3$ to get
$$sum_{s_1=pm1} sum_{s_2=pm1} sum_{s_3=pm1} e^{-{s_1s_2}}e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}.
$$
Now, let's look at the exponent of the internal sum, since $s_2$ is either $+1$ or $-1$, then $-s_2$ is either $+1$ or $-1$. Multiplying by $s_3$ which is either $+1$ or $-1$ results in one of each of $+1$ and $-1$. Therefore, the sum simplifies to
$$
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}sum_{s_3=pm1} e^{-{s_2s_3}}=
sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}(e+e^{-1})=(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}.
$$
By applying the same argument as above, we see that the exponent of this $e$ is one of each of $+1$ and $-1$, so we get
$$
(e+e^{-1})sum_{s_1=pm1} sum_{s_2=pm1} e^{-{s_1s_2}}=(e+e^{-1})sum_{s_1=pm1} (e+e^{-1})=(e+e^{-1})^2sum_{s_1=pm1}1.
$$
Since there are only two values for $s_1$, we get that this simplifies to $2(e+e^{-1})^2$, which can then be simplified in terms of $cosh$.
answered 2 days ago
Michael Burr
26.3k23262
26.3k23262
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007721%2fsummation-over-multiple-arguments%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown