Prove that $langle x,y,|x^2,y^2rangle$ is an infinite group
up vote
1
down vote
favorite
Here is my attempt:
$xyx neq xyxy neq xyxyx neq xyxyxy....$ gives infinite many elements in the group.
Is this correct?
finitely-generated
add a comment |
up vote
1
down vote
favorite
Here is my attempt:
$xyx neq xyxy neq xyxyx neq xyxyxy....$ gives infinite many elements in the group.
Is this correct?
finitely-generated
1
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
1
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Here is my attempt:
$xyx neq xyxy neq xyxyx neq xyxyxy....$ gives infinite many elements in the group.
Is this correct?
finitely-generated
Here is my attempt:
$xyx neq xyxy neq xyxyx neq xyxyxy....$ gives infinite many elements in the group.
Is this correct?
finitely-generated
finitely-generated
asked 2 days ago
mathnoob
73211
73211
1
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
1
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago
add a comment |
1
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
1
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago
1
1
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
1
1
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
You're on the right track! Let $text{FG}(x,y)=langle x,yrangle$, $G=langle x,ymid x^2,y^2rangle$, and $H$ be the minimal normal subgroup of $text{FG}(x,y)$ containing both $x^2$ and $y^2$. There is a canonical quotient homomorphism $eta:text{FG}(x,y)to G$.
We know that every element of $text{FG}(x,y)$ may be uniquely presented as a concatenation of $x,y,x^{-1},y^{1}$ such that no $x$ borders an $x^{-1}$ and likewise for $y$. For an arbitrary element $gin text{FG}(x,y)$ denote this presentation as $overline{g}$.
Consider the following algorithm $A$: given $gin text{FG}(x,y)$ we replace each instance of $x^{-1}$ and $y^{-1}$ in $overline{g}$ with $x$ and $y$ respectively. We then remove stepwise the leftmnost instances of $xx$ and $yy$ present until no such substrings remain. To take concrete examples, $$A:x^{-1}yyxxmapsto xoverbrace{yy}xxmapsto overbrace{xx}xmapsto x$$ $$A:x^{-1}yyxxxmapsto xoverbrace{yy}xxxmapsto overbrace{xx}xxmapsto overbrace{xx}mapsto text{empty}$$ Where "$text{empty}$" is the empty string.
Denote $H'$ the subset of elements $text{FG}(x,y)$ for whom $A$ outputs the null string. We can show that $H'$ is a subgroup of $text{FG}(x,y)$ and in particular a normal subgroup of $text{FG}(x,y)$. Let $eta':text{FG}(x,y)to text{FG}(x,y)/H'$ be the associated quotient map. Then we have that $eta'$ factors through a morphism $kappa:Gto text{FG}(x,y)/H'$ in the sense that $eta'=kappacirc eta$. Our $kappa$ is therefore surjective (since $eta'$ is surjective). So it suffices to demonstrate that $text{FG}(x,y)/H'$ is infinite.
To that end consider the sequence of elements $$eta'(xyx) neq eta(xyxy)' neq eta'(xyxyx) neq eta'(xyxyxy)dots$$
We will prove that the elements of this sequence are pairwise distinct. Let $eta'(g_1)$ and $eta'(g_2)$ be two such elements. It suffices to show that $eta'(g_1)eta'(g_2)^{-1}neq 1iff A(g_1g_2^{-1})neq text{empty}$. Can you finish from here?
It's worth noting that $H=H'$ and thus that $Gcong text{FG}(x,y)/H'$. The proof isn't that hard. (Specifically we've proven that $Hsubseteq H'$, proving that $H'subseteq H$ would do the trick.)
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
You're on the right track! Let $text{FG}(x,y)=langle x,yrangle$, $G=langle x,ymid x^2,y^2rangle$, and $H$ be the minimal normal subgroup of $text{FG}(x,y)$ containing both $x^2$ and $y^2$. There is a canonical quotient homomorphism $eta:text{FG}(x,y)to G$.
We know that every element of $text{FG}(x,y)$ may be uniquely presented as a concatenation of $x,y,x^{-1},y^{1}$ such that no $x$ borders an $x^{-1}$ and likewise for $y$. For an arbitrary element $gin text{FG}(x,y)$ denote this presentation as $overline{g}$.
Consider the following algorithm $A$: given $gin text{FG}(x,y)$ we replace each instance of $x^{-1}$ and $y^{-1}$ in $overline{g}$ with $x$ and $y$ respectively. We then remove stepwise the leftmnost instances of $xx$ and $yy$ present until no such substrings remain. To take concrete examples, $$A:x^{-1}yyxxmapsto xoverbrace{yy}xxmapsto overbrace{xx}xmapsto x$$ $$A:x^{-1}yyxxxmapsto xoverbrace{yy}xxxmapsto overbrace{xx}xxmapsto overbrace{xx}mapsto text{empty}$$ Where "$text{empty}$" is the empty string.
Denote $H'$ the subset of elements $text{FG}(x,y)$ for whom $A$ outputs the null string. We can show that $H'$ is a subgroup of $text{FG}(x,y)$ and in particular a normal subgroup of $text{FG}(x,y)$. Let $eta':text{FG}(x,y)to text{FG}(x,y)/H'$ be the associated quotient map. Then we have that $eta'$ factors through a morphism $kappa:Gto text{FG}(x,y)/H'$ in the sense that $eta'=kappacirc eta$. Our $kappa$ is therefore surjective (since $eta'$ is surjective). So it suffices to demonstrate that $text{FG}(x,y)/H'$ is infinite.
To that end consider the sequence of elements $$eta'(xyx) neq eta(xyxy)' neq eta'(xyxyx) neq eta'(xyxyxy)dots$$
We will prove that the elements of this sequence are pairwise distinct. Let $eta'(g_1)$ and $eta'(g_2)$ be two such elements. It suffices to show that $eta'(g_1)eta'(g_2)^{-1}neq 1iff A(g_1g_2^{-1})neq text{empty}$. Can you finish from here?
It's worth noting that $H=H'$ and thus that $Gcong text{FG}(x,y)/H'$. The proof isn't that hard. (Specifically we've proven that $Hsubseteq H'$, proving that $H'subseteq H$ would do the trick.)
add a comment |
up vote
1
down vote
accepted
You're on the right track! Let $text{FG}(x,y)=langle x,yrangle$, $G=langle x,ymid x^2,y^2rangle$, and $H$ be the minimal normal subgroup of $text{FG}(x,y)$ containing both $x^2$ and $y^2$. There is a canonical quotient homomorphism $eta:text{FG}(x,y)to G$.
We know that every element of $text{FG}(x,y)$ may be uniquely presented as a concatenation of $x,y,x^{-1},y^{1}$ such that no $x$ borders an $x^{-1}$ and likewise for $y$. For an arbitrary element $gin text{FG}(x,y)$ denote this presentation as $overline{g}$.
Consider the following algorithm $A$: given $gin text{FG}(x,y)$ we replace each instance of $x^{-1}$ and $y^{-1}$ in $overline{g}$ with $x$ and $y$ respectively. We then remove stepwise the leftmnost instances of $xx$ and $yy$ present until no such substrings remain. To take concrete examples, $$A:x^{-1}yyxxmapsto xoverbrace{yy}xxmapsto overbrace{xx}xmapsto x$$ $$A:x^{-1}yyxxxmapsto xoverbrace{yy}xxxmapsto overbrace{xx}xxmapsto overbrace{xx}mapsto text{empty}$$ Where "$text{empty}$" is the empty string.
Denote $H'$ the subset of elements $text{FG}(x,y)$ for whom $A$ outputs the null string. We can show that $H'$ is a subgroup of $text{FG}(x,y)$ and in particular a normal subgroup of $text{FG}(x,y)$. Let $eta':text{FG}(x,y)to text{FG}(x,y)/H'$ be the associated quotient map. Then we have that $eta'$ factors through a morphism $kappa:Gto text{FG}(x,y)/H'$ in the sense that $eta'=kappacirc eta$. Our $kappa$ is therefore surjective (since $eta'$ is surjective). So it suffices to demonstrate that $text{FG}(x,y)/H'$ is infinite.
To that end consider the sequence of elements $$eta'(xyx) neq eta(xyxy)' neq eta'(xyxyx) neq eta'(xyxyxy)dots$$
We will prove that the elements of this sequence are pairwise distinct. Let $eta'(g_1)$ and $eta'(g_2)$ be two such elements. It suffices to show that $eta'(g_1)eta'(g_2)^{-1}neq 1iff A(g_1g_2^{-1})neq text{empty}$. Can you finish from here?
It's worth noting that $H=H'$ and thus that $Gcong text{FG}(x,y)/H'$. The proof isn't that hard. (Specifically we've proven that $Hsubseteq H'$, proving that $H'subseteq H$ would do the trick.)
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
You're on the right track! Let $text{FG}(x,y)=langle x,yrangle$, $G=langle x,ymid x^2,y^2rangle$, and $H$ be the minimal normal subgroup of $text{FG}(x,y)$ containing both $x^2$ and $y^2$. There is a canonical quotient homomorphism $eta:text{FG}(x,y)to G$.
We know that every element of $text{FG}(x,y)$ may be uniquely presented as a concatenation of $x,y,x^{-1},y^{1}$ such that no $x$ borders an $x^{-1}$ and likewise for $y$. For an arbitrary element $gin text{FG}(x,y)$ denote this presentation as $overline{g}$.
Consider the following algorithm $A$: given $gin text{FG}(x,y)$ we replace each instance of $x^{-1}$ and $y^{-1}$ in $overline{g}$ with $x$ and $y$ respectively. We then remove stepwise the leftmnost instances of $xx$ and $yy$ present until no such substrings remain. To take concrete examples, $$A:x^{-1}yyxxmapsto xoverbrace{yy}xxmapsto overbrace{xx}xmapsto x$$ $$A:x^{-1}yyxxxmapsto xoverbrace{yy}xxxmapsto overbrace{xx}xxmapsto overbrace{xx}mapsto text{empty}$$ Where "$text{empty}$" is the empty string.
Denote $H'$ the subset of elements $text{FG}(x,y)$ for whom $A$ outputs the null string. We can show that $H'$ is a subgroup of $text{FG}(x,y)$ and in particular a normal subgroup of $text{FG}(x,y)$. Let $eta':text{FG}(x,y)to text{FG}(x,y)/H'$ be the associated quotient map. Then we have that $eta'$ factors through a morphism $kappa:Gto text{FG}(x,y)/H'$ in the sense that $eta'=kappacirc eta$. Our $kappa$ is therefore surjective (since $eta'$ is surjective). So it suffices to demonstrate that $text{FG}(x,y)/H'$ is infinite.
To that end consider the sequence of elements $$eta'(xyx) neq eta(xyxy)' neq eta'(xyxyx) neq eta'(xyxyxy)dots$$
We will prove that the elements of this sequence are pairwise distinct. Let $eta'(g_1)$ and $eta'(g_2)$ be two such elements. It suffices to show that $eta'(g_1)eta'(g_2)^{-1}neq 1iff A(g_1g_2^{-1})neq text{empty}$. Can you finish from here?
It's worth noting that $H=H'$ and thus that $Gcong text{FG}(x,y)/H'$. The proof isn't that hard. (Specifically we've proven that $Hsubseteq H'$, proving that $H'subseteq H$ would do the trick.)
You're on the right track! Let $text{FG}(x,y)=langle x,yrangle$, $G=langle x,ymid x^2,y^2rangle$, and $H$ be the minimal normal subgroup of $text{FG}(x,y)$ containing both $x^2$ and $y^2$. There is a canonical quotient homomorphism $eta:text{FG}(x,y)to G$.
We know that every element of $text{FG}(x,y)$ may be uniquely presented as a concatenation of $x,y,x^{-1},y^{1}$ such that no $x$ borders an $x^{-1}$ and likewise for $y$. For an arbitrary element $gin text{FG}(x,y)$ denote this presentation as $overline{g}$.
Consider the following algorithm $A$: given $gin text{FG}(x,y)$ we replace each instance of $x^{-1}$ and $y^{-1}$ in $overline{g}$ with $x$ and $y$ respectively. We then remove stepwise the leftmnost instances of $xx$ and $yy$ present until no such substrings remain. To take concrete examples, $$A:x^{-1}yyxxmapsto xoverbrace{yy}xxmapsto overbrace{xx}xmapsto x$$ $$A:x^{-1}yyxxxmapsto xoverbrace{yy}xxxmapsto overbrace{xx}xxmapsto overbrace{xx}mapsto text{empty}$$ Where "$text{empty}$" is the empty string.
Denote $H'$ the subset of elements $text{FG}(x,y)$ for whom $A$ outputs the null string. We can show that $H'$ is a subgroup of $text{FG}(x,y)$ and in particular a normal subgroup of $text{FG}(x,y)$. Let $eta':text{FG}(x,y)to text{FG}(x,y)/H'$ be the associated quotient map. Then we have that $eta'$ factors through a morphism $kappa:Gto text{FG}(x,y)/H'$ in the sense that $eta'=kappacirc eta$. Our $kappa$ is therefore surjective (since $eta'$ is surjective). So it suffices to demonstrate that $text{FG}(x,y)/H'$ is infinite.
To that end consider the sequence of elements $$eta'(xyx) neq eta(xyxy)' neq eta'(xyxyx) neq eta'(xyxyxy)dots$$
We will prove that the elements of this sequence are pairwise distinct. Let $eta'(g_1)$ and $eta'(g_2)$ be two such elements. It suffices to show that $eta'(g_1)eta'(g_2)^{-1}neq 1iff A(g_1g_2^{-1})neq text{empty}$. Can you finish from here?
It's worth noting that $H=H'$ and thus that $Gcong text{FG}(x,y)/H'$. The proof isn't that hard. (Specifically we've proven that $Hsubseteq H'$, proving that $H'subseteq H$ would do the trick.)
answered 2 days ago
Rafay Ashary
74618
74618
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3007751%2fprove-that-langle-x-y-x2-y2-rangle-is-an-infinite-group%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Yes...as long as it is clear to you why those elements are non-trivial. Your group is the free product $;C_2*C_2;$ , and free products are finite iff one of the factors is the trivial group and the other one is a finite group.
– DonAntonio
2 days ago
1
You have the right idea, but it'd be better to formalize it. You might instead try showing that the powers of $xy$ are distinct.
– Cameron Buie
2 days ago
Why exactly are those words distinct (in particular, nontrivial)?
– anomaly
2 days ago