How to prove a recurrence with multiple terms?
up vote
0
down vote
favorite
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
up vote
0
down vote
favorite
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
I have to prove that the recursion:
$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$
As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?
algorithms asymptotics recursive-algorithms recursion
algorithms asymptotics recursive-algorithms recursion
edited Feb 19 '15 at 16:02
Irddo
1,391819
1,391819
asked Feb 12 '15 at 0:37
CheekyKontBrah
561114
561114
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
bumped to the homepage by Community♦ 2 days ago
This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
add a comment |
up vote
0
down vote
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
add a comment |
up vote
0
down vote
up vote
0
down vote
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
$% Predefined Typography
newcommand{paren} [1]{left({#1}right)}
newcommand{bparen}[1]{bigg({#1}bigg)}
newcommand{brace} [1]{left{{#1}right}}
newcommand{bbrace}[1]{bigg{{#1}bigg}}
newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
newcommand{mag} [1]{leftlVert{#1}rightrVert}
newcommand{bmag} [1]{biggVert{#1}biggVert}
newcommand{abs} [1]{leftvert{#1}rightvert}
newcommand{babs} [1]{biggvert{#1}biggvert}
%
newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
newcommand{label} [2]{underbrace{#1}_{#2}}
newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
newcommand{ulabel} [2]{overbrace{#1}_{#2}}
%
newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
%
newcommand{iint}[2]{int {#1}~{rm d}{#2}}
newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
%
newcommand{ii}{{rm i}}
newcommand{ee}{{rm e}}
newcommand{exp}[1] { {rm e}^{large{#1}} }
%
newcommand{and} {~text{and}~}
newcommand{xor} {~text{xor}~}
newcommand{or} {~text{or}~}
newcommand{T} {text{True}}
newcommand{F} {text{False}}
%
newcommand{red} [1]{color{red}{#1}}
newcommand{blue} [1]{color{blue}{#1}}
newcommand{green}[1]{color{green}{#1}}
$
$$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
$$Downarrow$$
$$T(n) = Theta(n~log n)$$
You can just use strong induction on the definition directly:
For some positive $k_1$ and $k_2$, and $n_0$:
$$f in Theta(g)$$
is defined as
$$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$
So inductively prove:
$$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
$$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$
So we are going to need the inductive assumptions that
$$k_1 ~frac n3 ~log paren{frac n3}
le
Tparen{frac{n}{3}}
le k_2~ frac n3~log paren{frac n3} tag{A2}$$
$$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
le
Tparen{frac{2n}{3}}
le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$
So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:
$$begin{align}
k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
& k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
end{align}$$
(B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:
$$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
$$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$
So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.
answered Feb 19 '15 at 17:07
DanielV
17.7k42753
17.7k42753
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown