How to prove a recurrence with multiple terms?











up vote
0
down vote

favorite












I have to prove that the recursion:



$$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
$$
is
$$
T(n) = Θ(n*log n)$$



As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










share|cite|improve this question
















bumped to the homepage by Community 2 days ago


This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.



















    up vote
    0
    down vote

    favorite












    I have to prove that the recursion:



    $$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
    $$
    is
    $$
    T(n) = Θ(n*log n)$$



    As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










    share|cite|improve this question
















    bumped to the homepage by Community 2 days ago


    This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.

















      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I have to prove that the recursion:



      $$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
      $$
      is
      $$
      T(n) = Θ(n*log n)$$



      As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?










      share|cite|improve this question















      I have to prove that the recursion:



      $$T(n) = Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n
      $$
      is
      $$
      T(n) = Θ(n*log n)$$



      As you can see, the reccurence has two different terms that consist a T, namely $T(frac{n}{3})$ and $Tleft(frac{2n}{3}right)$. I can solve recurrences with one term but I'm not so sure how to apply the substitution method or the master method to recurrences with more than one recursive term. Or should I apply the tree method?







      algorithms asymptotics recursive-algorithms recursion






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited Feb 19 '15 at 16:02









      Irddo

      1,391819




      1,391819










      asked Feb 12 '15 at 0:37









      CheekyKontBrah

      561114




      561114





      bumped to the homepage by Community 2 days ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.







      bumped to the homepage by Community 2 days ago


      This question has answers that may be good or bad; the system has marked it active so that they can be reviewed.
























          1 Answer
          1






          active

          oldest

          votes

















          up vote
          0
          down vote



          +50










          $% Predefined Typography
          newcommand{paren} [1]{left({#1}right)}
          newcommand{bparen}[1]{bigg({#1}bigg)}
          newcommand{brace} [1]{left{{#1}right}}
          newcommand{bbrace}[1]{bigg{{#1}bigg}}
          newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
          newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
          newcommand{mag} [1]{leftlVert{#1}rightrVert}
          newcommand{bmag} [1]{biggVert{#1}biggVert}
          newcommand{abs} [1]{leftvert{#1}rightvert}
          newcommand{babs} [1]{biggvert{#1}biggvert}
          %
          newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
          newcommand{label} [2]{underbrace{#1}_{#2}}
          newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
          newcommand{ulabel} [2]{overbrace{#1}_{#2}}
          %
          newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
          newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
          %
          newcommand{iint}[2]{int {#1}~{rm d}{#2}}
          newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
          newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
          newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
          newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
          newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
          newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
          newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
          %
          newcommand{ii}{{rm i}}
          newcommand{ee}{{rm e}}
          newcommand{exp}[1] { {rm e}^{large{#1}} }
          %
          newcommand{and} {~text{and}~}
          newcommand{xor} {~text{xor}~}
          newcommand{or} {~text{or}~}
          newcommand{T} {text{True}}
          newcommand{F} {text{False}}
          %
          newcommand{red} [1]{color{red}{#1}}
          newcommand{blue} [1]{color{blue}{#1}}
          newcommand{green}[1]{color{green}{#1}}
          $




          $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
          $$Downarrow$$
          $$T(n) = Theta(n~log n)$$




          You can just use strong induction on the definition directly:




          For some positive $k_1$ and $k_2$, and $n_0$:
          $$f in Theta(g)$$
          is defined as
          $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




          So inductively prove:



          $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
          $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



          So we are going to need the inductive assumptions that



          $$k_1 ~frac n3 ~log paren{frac n3}
          le
          Tparen{frac{n}{3}}
          le k_2~ frac n3~log paren{frac n3} tag{A2}$$



          $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
          le
          Tparen{frac{2n}{3}}
          le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



          So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



          $$begin{align}
          k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
          & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
          end{align}$$



          (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



          $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
          $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



          So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






          share|cite|improve this answer





















            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














             

            draft saved


            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes








            up vote
            0
            down vote



            +50










            $% Predefined Typography
            newcommand{paren} [1]{left({#1}right)}
            newcommand{bparen}[1]{bigg({#1}bigg)}
            newcommand{brace} [1]{left{{#1}right}}
            newcommand{bbrace}[1]{bigg{{#1}bigg}}
            newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
            newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
            newcommand{mag} [1]{leftlVert{#1}rightrVert}
            newcommand{bmag} [1]{biggVert{#1}biggVert}
            newcommand{abs} [1]{leftvert{#1}rightvert}
            newcommand{babs} [1]{biggvert{#1}biggvert}
            %
            newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
            newcommand{label} [2]{underbrace{#1}_{#2}}
            newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
            newcommand{ulabel} [2]{overbrace{#1}_{#2}}
            %
            newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
            newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
            %
            newcommand{iint}[2]{int {#1}~{rm d}{#2}}
            newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
            newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
            newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
            newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
            newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
            newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
            newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
            %
            newcommand{ii}{{rm i}}
            newcommand{ee}{{rm e}}
            newcommand{exp}[1] { {rm e}^{large{#1}} }
            %
            newcommand{and} {~text{and}~}
            newcommand{xor} {~text{xor}~}
            newcommand{or} {~text{or}~}
            newcommand{T} {text{True}}
            newcommand{F} {text{False}}
            %
            newcommand{red} [1]{color{red}{#1}}
            newcommand{blue} [1]{color{blue}{#1}}
            newcommand{green}[1]{color{green}{#1}}
            $




            $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
            $$Downarrow$$
            $$T(n) = Theta(n~log n)$$




            You can just use strong induction on the definition directly:




            For some positive $k_1$ and $k_2$, and $n_0$:
            $$f in Theta(g)$$
            is defined as
            $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




            So inductively prove:



            $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
            $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



            So we are going to need the inductive assumptions that



            $$k_1 ~frac n3 ~log paren{frac n3}
            le
            Tparen{frac{n}{3}}
            le k_2~ frac n3~log paren{frac n3} tag{A2}$$



            $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
            le
            Tparen{frac{2n}{3}}
            le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



            So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



            $$begin{align}
            k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
            & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
            end{align}$$



            (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



            $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
            $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



            So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






            share|cite|improve this answer

























              up vote
              0
              down vote



              +50










              $% Predefined Typography
              newcommand{paren} [1]{left({#1}right)}
              newcommand{bparen}[1]{bigg({#1}bigg)}
              newcommand{brace} [1]{left{{#1}right}}
              newcommand{bbrace}[1]{bigg{{#1}bigg}}
              newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
              newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
              newcommand{mag} [1]{leftlVert{#1}rightrVert}
              newcommand{bmag} [1]{biggVert{#1}biggVert}
              newcommand{abs} [1]{leftvert{#1}rightvert}
              newcommand{babs} [1]{biggvert{#1}biggvert}
              %
              newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
              newcommand{label} [2]{underbrace{#1}_{#2}}
              newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
              newcommand{ulabel} [2]{overbrace{#1}_{#2}}
              %
              newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
              newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
              %
              newcommand{iint}[2]{int {#1}~{rm d}{#2}}
              newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
              newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
              newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
              newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
              newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
              newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
              newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
              %
              newcommand{ii}{{rm i}}
              newcommand{ee}{{rm e}}
              newcommand{exp}[1] { {rm e}^{large{#1}} }
              %
              newcommand{and} {~text{and}~}
              newcommand{xor} {~text{xor}~}
              newcommand{or} {~text{or}~}
              newcommand{T} {text{True}}
              newcommand{F} {text{False}}
              %
              newcommand{red} [1]{color{red}{#1}}
              newcommand{blue} [1]{color{blue}{#1}}
              newcommand{green}[1]{color{green}{#1}}
              $




              $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
              $$Downarrow$$
              $$T(n) = Theta(n~log n)$$




              You can just use strong induction on the definition directly:




              For some positive $k_1$ and $k_2$, and $n_0$:
              $$f in Theta(g)$$
              is defined as
              $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




              So inductively prove:



              $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
              $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



              So we are going to need the inductive assumptions that



              $$k_1 ~frac n3 ~log paren{frac n3}
              le
              Tparen{frac{n}{3}}
              le k_2~ frac n3~log paren{frac n3} tag{A2}$$



              $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
              le
              Tparen{frac{2n}{3}}
              le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



              So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



              $$begin{align}
              k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
              & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
              end{align}$$



              (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



              $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
              $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



              So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






              share|cite|improve this answer























                up vote
                0
                down vote



                +50







                up vote
                0
                down vote



                +50




                +50




                $% Predefined Typography
                newcommand{paren} [1]{left({#1}right)}
                newcommand{bparen}[1]{bigg({#1}bigg)}
                newcommand{brace} [1]{left{{#1}right}}
                newcommand{bbrace}[1]{bigg{{#1}bigg}}
                newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
                newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
                newcommand{mag} [1]{leftlVert{#1}rightrVert}
                newcommand{bmag} [1]{biggVert{#1}biggVert}
                newcommand{abs} [1]{leftvert{#1}rightvert}
                newcommand{babs} [1]{biggvert{#1}biggvert}
                %
                newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
                newcommand{label} [2]{underbrace{#1}_{#2}}
                newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
                newcommand{ulabel} [2]{overbrace{#1}_{#2}}
                %
                newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
                newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
                %
                newcommand{iint}[2]{int {#1}~{rm d}{#2}}
                newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
                newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
                newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
                newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
                newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
                newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
                newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
                %
                newcommand{ii}{{rm i}}
                newcommand{ee}{{rm e}}
                newcommand{exp}[1] { {rm e}^{large{#1}} }
                %
                newcommand{and} {~text{and}~}
                newcommand{xor} {~text{xor}~}
                newcommand{or} {~text{or}~}
                newcommand{T} {text{True}}
                newcommand{F} {text{False}}
                %
                newcommand{red} [1]{color{red}{#1}}
                newcommand{blue} [1]{color{blue}{#1}}
                newcommand{green}[1]{color{green}{#1}}
                $




                $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
                $$Downarrow$$
                $$T(n) = Theta(n~log n)$$




                You can just use strong induction on the definition directly:




                For some positive $k_1$ and $k_2$, and $n_0$:
                $$f in Theta(g)$$
                is defined as
                $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




                So inductively prove:



                $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
                $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



                So we are going to need the inductive assumptions that



                $$k_1 ~frac n3 ~log paren{frac n3}
                le
                Tparen{frac{n}{3}}
                le k_2~ frac n3~log paren{frac n3} tag{A2}$$



                $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
                le
                Tparen{frac{2n}{3}}
                le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



                So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



                $$begin{align}
                k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
                & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
                end{align}$$



                (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



                $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
                $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



                So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.






                share|cite|improve this answer












                $% Predefined Typography
                newcommand{paren} [1]{left({#1}right)}
                newcommand{bparen}[1]{bigg({#1}bigg)}
                newcommand{brace} [1]{left{{#1}right}}
                newcommand{bbrace}[1]{bigg{{#1}bigg}}
                newcommand{floor} [1]{leftlfloor{#1}rightrfloor}
                newcommand{bfloor}[1]{bigglfloor{#1}biggrfloor}
                newcommand{mag} [1]{leftlVert{#1}rightrVert}
                newcommand{bmag} [1]{biggVert{#1}biggVert}
                newcommand{abs} [1]{leftvert{#1}rightvert}
                newcommand{babs} [1]{biggvert{#1}biggvert}
                %
                newcommand{labelt}[2]{underbrace{#1}_{text{#2}}}
                newcommand{label} [2]{underbrace{#1}_{#2}}
                newcommand{ulabelt}[2]{overbrace{#1}_{text{#2}}}
                newcommand{ulabel} [2]{overbrace{#1}_{#2}}
                %
                newcommand{setcomp}[2]{left{~{#1}~~middle vert~~ {#2}~right}}
                newcommand{bsetcomp}[2]{bigg{~{#1}~~bigg vert~~ {#2}~bigg}}
                %
                newcommand{iint}[2]{int {#1}~{rm d}{#2}}
                newcommand{dint}[4]{int_{#3}^{#4}{#1}~{rm d}{#2}}
                newcommand{pred}[2]{frac{rm d}{{rm d}{#2}}#1}
                newcommand{ind} [2]{frac{{rm d} {#1}}{{rm d}{#2}}}
                newcommand{predp}[2]{frac{partial}{partial {#2}}#1}
                newcommand{indp} [2]{frac{{partial} {#1}}{partial {#2}}}
                newcommand{predn}[3]{frac{rm d}^{#3}{{rm d}{#2}^{#3}}#1}
                newcommand{indn} [3]{frac{{rm d}^{#3} {#1}}{{rm d}{#2}^{#3}}}
                %
                newcommand{ii}{{rm i}}
                newcommand{ee}{{rm e}}
                newcommand{exp}[1] { {rm e}^{large{#1}} }
                %
                newcommand{and} {~text{and}~}
                newcommand{xor} {~text{xor}~}
                newcommand{or} {~text{or}~}
                newcommand{T} {text{True}}
                newcommand{F} {text{False}}
                %
                newcommand{red} [1]{color{red}{#1}}
                newcommand{blue} [1]{color{blue}{#1}}
                newcommand{green}[1]{color{green}{#1}}
                $




                $$T(n) = T paren{ frac{n}{3} } + Tparen{ frac{2n}{3} } + n$$
                $$Downarrow$$
                $$T(n) = Theta(n~log n)$$




                You can just use strong induction on the definition directly:




                For some positive $k_1$ and $k_2$, and $n_0$:
                $$f in Theta(g)$$
                is defined as
                $$forall n > n_0 quad k_1~g(n) le f(n) le k_2 ~ g(n)$$




                So inductively prove:



                $$k_1 ~n~log(n) le T(n) le k_2~ n~log(n)$$
                $$k_1 ~n~log(n) le Tleft(frac{n}{3}right) + Tleft(frac{2n}{3}right) + n le k_2~ n~log(n) tag{A1}$$



                So we are going to need the inductive assumptions that



                $$k_1 ~frac n3 ~log paren{frac n3}
                le
                Tparen{frac{n}{3}}
                le k_2~ frac n3~log paren{frac n3} tag{A2}$$



                $$k_1 ~frac {2n}3 ~log paren{frac {2n}3}
                le
                Tparen{frac{2n}{3}}
                le k_2~ frac {2n}3~log paren{frac {2n}3} tag{A3}$$



                So applying (A2) and (A3) to (A1), it leaves 2 statements to prove, find $k_1$ and $k_2$ such that both of the following hold:



                $$begin{align}
                k_1 ~n~log(n) ~le~ & k_1 ~frac n3 ~log paren{frac n3} + k_1 ~frac {2n}3 ~log paren{frac {2n}3} + n tag{B1} \
                & k_2~ frac n3~log paren{frac n3} + k_2~ frac {2n}3~log paren{frac {2n}3} + n ~le~ k_2 ~ n~log(n) tag{C1}
                end{align}$$



                (B1) and (C1) may be simplified by combining the $n$ and $n~log n$ expressions together:



                $$0 ~le~ frac 13 paren{k_1 logparen{frac 13} + 2 k_1 logparen{frac 23} + 3 } n tag{B2}$$
                $$0 ~le~ -frac 13 paren{k_2 logparen{frac 13} + 2 k_2 logparen{frac 23} + 3} n tag{C2}$$



                So very small $k_1$ satisfy (B2) and very large $k_2$ satisfy (C2), so the induction is finished and the proposition is established.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered Feb 19 '15 at 17:07









                DanielV

                17.7k42753




                17.7k42753






























                     

                    draft saved


                    draft discarded



















































                     


                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1144367%2fhow-to-prove-a-recurrence-with-multiple-terms%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Berounka

                    Sphinx de Gizeh

                    Different font size/position of beamer's navigation symbols template's content depending on regular/plain...