The inequality $sum_{k=1}^n frac{1}{k^4} le 2 - frac{1}{sqrt n}$











up vote
1
down vote

favorite
2












Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.










share|cite|improve this question
























  • Wrong for $n=2,3,4,5$ !
    – Yves Daoust
    Nov 16 at 11:35










  • Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
    – Travis
    Nov 16 at 12:00










  • Fixed, sorry for my mistake
    – J. Abraham
    Nov 16 at 12:18










  • You should fix the name of you post, too ...
    – Stockfish
    Nov 16 at 12:28















up vote
1
down vote

favorite
2












Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.










share|cite|improve this question
























  • Wrong for $n=2,3,4,5$ !
    – Yves Daoust
    Nov 16 at 11:35










  • Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
    – Travis
    Nov 16 at 12:00










  • Fixed, sorry for my mistake
    – J. Abraham
    Nov 16 at 12:18










  • You should fix the name of you post, too ...
    – Stockfish
    Nov 16 at 12:28













up vote
1
down vote

favorite
2









up vote
1
down vote

favorite
2






2





Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.










share|cite|improve this question















Prove that for every $n$ we have $$sum_{k=1}^n frac{1}{k^4} le 2 - dfrac{1}{sqrt{n}}$$ I've tried induction, but I ended up with polynomials of high degree.







inequality summation






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 16 at 12:29

























asked Nov 16 at 11:29









J. Abraham

486313




486313












  • Wrong for $n=2,3,4,5$ !
    – Yves Daoust
    Nov 16 at 11:35










  • Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
    – Travis
    Nov 16 at 12:00










  • Fixed, sorry for my mistake
    – J. Abraham
    Nov 16 at 12:18










  • You should fix the name of you post, too ...
    – Stockfish
    Nov 16 at 12:28


















  • Wrong for $n=2,3,4,5$ !
    – Yves Daoust
    Nov 16 at 11:35










  • Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
    – Travis
    Nov 16 at 12:00










  • Fixed, sorry for my mistake
    – J. Abraham
    Nov 16 at 12:18










  • You should fix the name of you post, too ...
    – Stockfish
    Nov 16 at 12:28
















Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 at 11:35




Wrong for $n=2,3,4,5$ !
– Yves Daoust
Nov 16 at 11:35












Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 at 12:00




Presumably the inequality should go the other way around, since the limit as $n to infty$ of the l.h.s. is $< 2$.
– Travis
Nov 16 at 12:00












Fixed, sorry for my mistake
– J. Abraham
Nov 16 at 12:18




Fixed, sorry for my mistake
– J. Abraham
Nov 16 at 12:18












You should fix the name of you post, too ...
– Stockfish
Nov 16 at 12:28




You should fix the name of you post, too ...
– Stockfish
Nov 16 at 12:28










2 Answers
2






active

oldest

votes

















up vote
1
down vote



accepted










For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$






share|cite|improve this answer





















  • Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
    – robjohn
    yesterday




















up vote
2
down vote














The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$




$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$

Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have



$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$



So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.






share|cite|improve this answer























  • Can you solve it without calculus?
    – J. Abraham
    Nov 16 at 12:44










  • For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
    – Jevaut
    Nov 16 at 13:00











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














 

draft saved


draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001024%2fthe-inequality-sum-k-1n-frac1k4-le-2-frac1-sqrt-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes








up vote
1
down vote



accepted










For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$






share|cite|improve this answer





















  • Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
    – robjohn
    yesterday

















up vote
1
down vote



accepted










For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$






share|cite|improve this answer





















  • Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
    – robjohn
    yesterday















up vote
1
down vote



accepted







up vote
1
down vote



accepted






For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$






share|cite|improve this answer












For $nge2$,
$$
begin{align}
frac1{n^4}
&lefrac1{2n^{3/2}}\
&=frac1{sqrt{nvphantom{-1}}sqrt{nvphantom{-1}}left(sqrt{nvphantom{-1}}+sqrt{nvphantom{-1}}right)}\
&lefrac1{sqrt{nvphantom{-1}}sqrt{n-1}left(sqrt{nvphantom{-1}}+sqrt{n-1}right)}\
&=frac1{sqrt{n-1}}-frac1{sqrt{nvphantom{-1}}}
end{align}
$$

Therefore,
$$
begin{align}
sum_{k=1}^nfrac1{k^4}
&le1+sum_{k=2}^nleft(frac1{sqrt{k-1}}-frac1{sqrt{kvphantom{-1}}}right)\
&=2-frac1{sqrt{nvphantom{-1}}}
end{align}
$$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered yesterday









robjohn

262k27300620




262k27300620












  • Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
    – robjohn
    yesterday




















  • Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
    – robjohn
    yesterday


















Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn
yesterday






Note that this exact same estimate also works for $sumlimits_{k=1}^nfrac1{k^{5/2}}$
– robjohn
yesterday












up vote
2
down vote














The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$




$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$

Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have



$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$



So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.






share|cite|improve this answer























  • Can you solve it without calculus?
    – J. Abraham
    Nov 16 at 12:44










  • For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
    – Jevaut
    Nov 16 at 13:00















up vote
2
down vote














The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$




$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$

Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have



$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$



So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.






share|cite|improve this answer























  • Can you solve it without calculus?
    – J. Abraham
    Nov 16 at 12:44










  • For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
    – Jevaut
    Nov 16 at 13:00













up vote
2
down vote










up vote
2
down vote










The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$




$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$

Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have



$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$



So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.






share|cite|improve this answer















The function $x^{-p}$ is a positive decreasing function. For such functions, sums at evenly spaced points are well approximated by integrals. More precisely,$$ int_1^n frac{1}{x^p}dx < sum_{i = 1}^n frac{1}{i^p} < int_1^n
frac{1}{x^p}dx + 1.$$




$$sum_{k=1}^n frac{1}{k^4}<int_1^n
frac{1}{x^4}dx + 1 =1+frac{n^{-3}}{-3}=1-frac{1}{3n^3}$$

Also, given that the function $$f(x)=3x^3sqrt{x}+sqrt{x}-3x^3$$
is strictly increasing and defined on $[0,+infty)$ with $f(0)=0$, we have



$$f(n) geq 0 iff 3n^3sqrt{n}+sqrt{n}-3n^3geq0 Rightarrow frac{3n^3sqrt{n}+sqrt{n}-3n^3}{3n^3sqrt{n}}> 0 iff$$
$$ 1+frac{1}{3n^3}-frac{1}{sqrt{n}} >0 Rightarrow1-frac{1}{3n^3}< 2-frac{1}{sqrt{n}}$$



So
$$sum_{k=1}^n frac{1}{k^4}leq2-frac{1}{sqrt{n}}$$
with equality only for $n=1$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 days ago

























answered Nov 16 at 12:31









Jevaut

5049




5049












  • Can you solve it without calculus?
    – J. Abraham
    Nov 16 at 12:44










  • For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
    – Jevaut
    Nov 16 at 13:00


















  • Can you solve it without calculus?
    – J. Abraham
    Nov 16 at 12:44










  • For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
    – Jevaut
    Nov 16 at 13:00
















Can you solve it without calculus?
– J. Abraham
Nov 16 at 12:44




Can you solve it without calculus?
– J. Abraham
Nov 16 at 12:44












For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 at 13:00




For the first part, no. I can't think of a more efficient way than an integral bound. For the second part: $$ 1-frac{1}{3n^3} < 2 - frac{1}{sqrt{n}} iff -frac{1}{3n^3} < frac{sqrt{n}-1}{sqrt{n}} iff -frac{1}{3n^2sqrt{n}} < sqrt{n}-1$$ which is true, because $sqrt{n} geq 1$ (LHS is negative, RHS is non-negative).
– Jevaut
Nov 16 at 13:00


















 

draft saved


draft discarded



















































 


draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3001024%2fthe-inequality-sum-k-1n-frac1k4-le-2-frac1-sqrt-n%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh