Can (linear) differential equations of infinite order be recast into equations of first order?











up vote
10
down vote

favorite
4












In most analysis courses one sees that differential equations of order $n$ are basically a subset of higher dimensional differential equations of order $1$, for example the equation:



$$f^{(n)}(t)=Fleft(f(t),f'(t),...,f^{(n-1)}(t),tright)$$



Is the same as:
$$frac{d}{dt},begin{pmatrix}g_0(t)\g_1(t)\vdots\g_{n-1(t)}end{pmatrix}=begin{pmatrix}g_1(t)\vdots\g_{n-1}(t)\Fleft(g_0(t),g_1(t),...,g_{n-1}(t),tright)end{pmatrix}$$



This is especially useful, as it allows one to write down explicitly the solutions to linear differential equations of finite order, if we have:
$$f^{(n)}(t)=sum_{k=0}^{n-1}a_k, f^{(k)}(t)$$
Then the corresponding $n$-dimensional equation is of the form:
$$frac{d}{dt} g(t) = Acdot g(t)$$
for some matrix $A$ and the solution is $g(t)=exp(A,t)g(0)$. It is possible to generalise to time dependent coefficients $a_k$.



Is there a way to implement this trick for differential equations that are essentially of infinite order? For example the equation
$$f=sum_{k=1}^infty f^{(k)}(t),$$
of which the solution space is $f={Cexp(frac t2)mid Cinmathbb R$ (or $mathbb C$)$}$. More generally I would like to put something of the form
$$sum_{k=0}^infty a_k, f^{(k)}(t)=0$$
(where $a_k$ are as regular as needed (but with infinite non-zero terms)) into the form
$$frac{d}{dt} u = A(u)$$
Where $u$ is a map $C^infty(mathbb R,X)$ with $X$ a Banach space and $Ain mathcal L(X)$.










share|cite|improve this question
























  • I'm still hoping someone to answer this question :)
    – onurcanbektas
    Feb 13 at 10:17

















up vote
10
down vote

favorite
4












In most analysis courses one sees that differential equations of order $n$ are basically a subset of higher dimensional differential equations of order $1$, for example the equation:



$$f^{(n)}(t)=Fleft(f(t),f'(t),...,f^{(n-1)}(t),tright)$$



Is the same as:
$$frac{d}{dt},begin{pmatrix}g_0(t)\g_1(t)\vdots\g_{n-1(t)}end{pmatrix}=begin{pmatrix}g_1(t)\vdots\g_{n-1}(t)\Fleft(g_0(t),g_1(t),...,g_{n-1}(t),tright)end{pmatrix}$$



This is especially useful, as it allows one to write down explicitly the solutions to linear differential equations of finite order, if we have:
$$f^{(n)}(t)=sum_{k=0}^{n-1}a_k, f^{(k)}(t)$$
Then the corresponding $n$-dimensional equation is of the form:
$$frac{d}{dt} g(t) = Acdot g(t)$$
for some matrix $A$ and the solution is $g(t)=exp(A,t)g(0)$. It is possible to generalise to time dependent coefficients $a_k$.



Is there a way to implement this trick for differential equations that are essentially of infinite order? For example the equation
$$f=sum_{k=1}^infty f^{(k)}(t),$$
of which the solution space is $f={Cexp(frac t2)mid Cinmathbb R$ (or $mathbb C$)$}$. More generally I would like to put something of the form
$$sum_{k=0}^infty a_k, f^{(k)}(t)=0$$
(where $a_k$ are as regular as needed (but with infinite non-zero terms)) into the form
$$frac{d}{dt} u = A(u)$$
Where $u$ is a map $C^infty(mathbb R,X)$ with $X$ a Banach space and $Ain mathcal L(X)$.










share|cite|improve this question
























  • I'm still hoping someone to answer this question :)
    – onurcanbektas
    Feb 13 at 10:17















up vote
10
down vote

favorite
4









up vote
10
down vote

favorite
4






4





In most analysis courses one sees that differential equations of order $n$ are basically a subset of higher dimensional differential equations of order $1$, for example the equation:



$$f^{(n)}(t)=Fleft(f(t),f'(t),...,f^{(n-1)}(t),tright)$$



Is the same as:
$$frac{d}{dt},begin{pmatrix}g_0(t)\g_1(t)\vdots\g_{n-1(t)}end{pmatrix}=begin{pmatrix}g_1(t)\vdots\g_{n-1}(t)\Fleft(g_0(t),g_1(t),...,g_{n-1}(t),tright)end{pmatrix}$$



This is especially useful, as it allows one to write down explicitly the solutions to linear differential equations of finite order, if we have:
$$f^{(n)}(t)=sum_{k=0}^{n-1}a_k, f^{(k)}(t)$$
Then the corresponding $n$-dimensional equation is of the form:
$$frac{d}{dt} g(t) = Acdot g(t)$$
for some matrix $A$ and the solution is $g(t)=exp(A,t)g(0)$. It is possible to generalise to time dependent coefficients $a_k$.



Is there a way to implement this trick for differential equations that are essentially of infinite order? For example the equation
$$f=sum_{k=1}^infty f^{(k)}(t),$$
of which the solution space is $f={Cexp(frac t2)mid Cinmathbb R$ (or $mathbb C$)$}$. More generally I would like to put something of the form
$$sum_{k=0}^infty a_k, f^{(k)}(t)=0$$
(where $a_k$ are as regular as needed (but with infinite non-zero terms)) into the form
$$frac{d}{dt} u = A(u)$$
Where $u$ is a map $C^infty(mathbb R,X)$ with $X$ a Banach space and $Ain mathcal L(X)$.










share|cite|improve this question















In most analysis courses one sees that differential equations of order $n$ are basically a subset of higher dimensional differential equations of order $1$, for example the equation:



$$f^{(n)}(t)=Fleft(f(t),f'(t),...,f^{(n-1)}(t),tright)$$



Is the same as:
$$frac{d}{dt},begin{pmatrix}g_0(t)\g_1(t)\vdots\g_{n-1(t)}end{pmatrix}=begin{pmatrix}g_1(t)\vdots\g_{n-1}(t)\Fleft(g_0(t),g_1(t),...,g_{n-1}(t),tright)end{pmatrix}$$



This is especially useful, as it allows one to write down explicitly the solutions to linear differential equations of finite order, if we have:
$$f^{(n)}(t)=sum_{k=0}^{n-1}a_k, f^{(k)}(t)$$
Then the corresponding $n$-dimensional equation is of the form:
$$frac{d}{dt} g(t) = Acdot g(t)$$
for some matrix $A$ and the solution is $g(t)=exp(A,t)g(0)$. It is possible to generalise to time dependent coefficients $a_k$.



Is there a way to implement this trick for differential equations that are essentially of infinite order? For example the equation
$$f=sum_{k=1}^infty f^{(k)}(t),$$
of which the solution space is $f={Cexp(frac t2)mid Cinmathbb R$ (or $mathbb C$)$}$. More generally I would like to put something of the form
$$sum_{k=0}^infty a_k, f^{(k)}(t)=0$$
(where $a_k$ are as regular as needed (but with infinite non-zero terms)) into the form
$$frac{d}{dt} u = A(u)$$
Where $u$ is a map $C^infty(mathbb R,X)$ with $X$ a Banach space and $Ain mathcal L(X)$.







real-analysis sequences-and-series functional-analysis differential-equations analysis






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 24 at 14:53

























asked Aug 6 '16 at 14:06









s.harp

8,36612049




8,36612049












  • I'm still hoping someone to answer this question :)
    – onurcanbektas
    Feb 13 at 10:17




















  • I'm still hoping someone to answer this question :)
    – onurcanbektas
    Feb 13 at 10:17


















I'm still hoping someone to answer this question :)
– onurcanbektas
Feb 13 at 10:17






I'm still hoping someone to answer this question :)
– onurcanbektas
Feb 13 at 10:17

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1884274%2fcan-linear-differential-equations-of-infinite-order-be-recast-into-equations-o%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f1884274%2fcan-linear-differential-equations-of-infinite-order-be-recast-into-equations-o%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh