How to calculate the line integral with respect to the circle in counterclockwise direction
up vote
1
down vote
favorite
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
add a comment |
up vote
1
down vote
favorite
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
Consider the vector field $F=<y,-x>$.
Compute the line integral $int_cFcdot dr$ where $C$ is the circle of radius $3$ centered at the origin counterclockwise.
My Try:
The circle is $x^2+y^2=9$
$x=3cos t$
$y=3sin t$ for $0le tle2pi$
Now how do I calculate $int_cFcdot dr$?
Can anyone explain how to solve this.
calculus integration multivariable-calculus line-integrals
calculus integration multivariable-calculus line-integrals
asked Nov 26 at 2:02
user982787
897
897
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16
add a comment |
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
up vote
1
down vote
accepted
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
The radial vector is
$vec r = begin{pmatrix} x \ y end{pmatrix}; tag 1$
also,
$F = begin{pmatrix} y \ - x end{pmatrix}; tag 2$
with
$x = 3 cos t, tag 3$
$y = 3 sin t, tag 4$
we have
$vec r = begin{pmatrix} 3 cos t \ 3sin t end{pmatrix}, tag 5$
$d vec r = dfrac{d vec r}{dt} dt = begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt, tag 5$
and
$F = begin{pmatrix} 3sin t \ -3cos t end{pmatrix}; tag 6$
then
$F cdot d vec r = begin{pmatrix} 3sin t \ -3cos t end{pmatrix} cdot begin{pmatrix} -3sin t \ 3cos t end{pmatrix} dt$
$= (-9 sin^2 t - 9 cos^2 t)dt = -9(sin^2 t + cos^2 t)dt = -9(1)dt = -9dt; tag 7$
finally,
$displaystyle int_C F cdot d vec r = int_C -9 dt = -9 int_C dt = -9(2pi) = -18pi. tag 8$
answered Nov 26 at 2:26
Robert Lewis
42.3k22761
42.3k22761
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3013712%2fhow-to-calculate-the-line-integral-with-respect-to-the-circle-in-counterclockwis%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just follow the definition. Can you look up the definition?
– Zachary Selk
Nov 26 at 2:09
@ZacharySelk Here $F=<y,-x>$. Then what about $r(t)$?
– user982787
Nov 26 at 2:16