Integral inequality of two variables function











up vote
0
down vote

favorite












Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove



$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$



I have tried the Taylor formular,



$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$

where $u(xi_x,xi_y)=iint_D u dxdy$.



but there seems to be some matters of detail.



Thanks for your help.










share|cite|improve this question
























  • I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
    – Eric Yau
    Nov 27 at 8:53












  • Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
    – gcfsjfcus
    Nov 27 at 11:16

















up vote
0
down vote

favorite












Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove



$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$



I have tried the Taylor formular,



$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$

where $u(xi_x,xi_y)=iint_D u dxdy$.



but there seems to be some matters of detail.



Thanks for your help.










share|cite|improve this question
























  • I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
    – Eric Yau
    Nov 27 at 8:53












  • Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
    – gcfsjfcus
    Nov 27 at 11:16















up vote
0
down vote

favorite









up vote
0
down vote

favorite











Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove



$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$



I have tried the Taylor formular,



$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$

where $u(xi_x,xi_y)=iint_D u dxdy$.



but there seems to be some matters of detail.



Thanks for your help.










share|cite|improve this question















Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove



$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$



I have tried the Taylor formular,



$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$

where $u(xi_x,xi_y)=iint_D u dxdy$.



but there seems to be some matters of detail.



Thanks for your help.







calculus analysis inequality integral-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 at 11:19

























asked Nov 27 at 6:07









gcfsjfcus

596




596












  • I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
    – Eric Yau
    Nov 27 at 8:53












  • Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
    – gcfsjfcus
    Nov 27 at 11:16




















  • I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
    – Eric Yau
    Nov 27 at 8:53












  • Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
    – gcfsjfcus
    Nov 27 at 11:16


















I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53






I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53














Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16






Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16

















active

oldest

votes











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015398%2fintegral-inequality-of-two-variables-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015398%2fintegral-inequality-of-two-variables-function%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

Sphinx de Gizeh