Integral inequality of two variables function
up vote
0
down vote
favorite
Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove
$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$
I have tried the Taylor formular,
$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$
where $u(xi_x,xi_y)=iint_D u dxdy$.
but there seems to be some matters of detail.
Thanks for your help.
calculus analysis inequality integral-inequality
add a comment |
up vote
0
down vote
favorite
Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove
$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$
I have tried the Taylor formular,
$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$
where $u(xi_x,xi_y)=iint_D u dxdy$.
but there seems to be some matters of detail.
Thanks for your help.
calculus analysis inequality integral-inequality
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove
$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$
I have tried the Taylor formular,
$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$
where $u(xi_x,xi_y)=iint_D u dxdy$.
but there seems to be some matters of detail.
Thanks for your help.
calculus analysis inequality integral-inequality
Suppose $u(x,y)$ is continuous in $D={(x,y)| 0le x le 1, 0le y le 1}$, $frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial^2 u}{partial x partial y}$ is absolutely integrable, prove
$$
sup_{(x,y) in D} |u| le iint_D |u| dxdy + iint_D left( left| frac{partial u}{partial x} right|+left|frac{partial u}{partial y}right| right) dxdy + iint_D left|frac{partial^2 u}{partial x partial y}right| dxdy.
$$
I have tried the Taylor formular,
$$
sup |u|=|u(xi_x,xi_y)+u(x_0,y_0)-u(xi_x,xi_y)|=left| u(xi_x,xi_y)+frac{partial u}{partial x}(xi_x,xi_y)(x_0-xi_x)+frac{partial u}{partial y}(xi_x,xi_y)(y_0-xi_y)+frac12 frac{partial^2 u}{partial x partial y}(eta_x,eta_y)[(x_0-xi_x)^2+(y_0-xi_y)^2] right|
$$
where $u(xi_x,xi_y)=iint_D u dxdy$.
but there seems to be some matters of detail.
Thanks for your help.
calculus analysis inequality integral-inequality
calculus analysis inequality integral-inequality
edited Nov 27 at 11:19
asked Nov 27 at 6:07
gcfsjfcus
596
596
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16
add a comment |
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015398%2fintegral-inequality-of-two-variables-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015398%2fintegral-inequality-of-two-variables-function%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I think you are close to the answer. Just note that $max{|x_0-xi_x|,|y_0-xi_y|,frac{1}{2}|(x_0-xi_x)^2+(y_0-x_i_y)^2|}|le1$ when these variables are all in $D$.
– Eric Yau
Nov 27 at 8:53
Thanks, but how to prove $iint_D (|frac{partial u}{partial x}(xi_x,xi_y)|+|frac{partial u}{partial y}(xi_x,xi_y)|) dxdy le iint_D (|frac{partial u}{partial x}|+|frac{partial u}{partial y}|) dxdy$ and $iint_D |frac{partial^2 u}{partial x partial y}(eta_x,eta_y|) dxdy le iint_D |frac{partial^2 u}{partial x partial y}dxdy$ ?
– gcfsjfcus
Nov 27 at 11:16