Variance of an unbiased estimator $L = fracpi4sqrt{X_1X_2}$











up vote
1
down vote

favorite












Find variance of unbiased estimator L, where $L = dfracpi4sqrt{X_1X_2}$.



$f(x) = dfrac1theta e^{frac{-x}{theta}}$, $x>0$,



$X_1$ and $X_2$ are independent, and exponentially distributed.



Since $L$ is unbiased so I know $E[L] = theta$, right?



Also, $operatorname{Var}[x] = E[x^2] - E[x]^2$. But I'm struggling with finding $E[x^2]$. Any help will be appreciated. Thank you.










share|cite|improve this question




















  • 1




    How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
    – jesterII
    Nov 27 at 11:59










  • @jesterll edited.
    – OvermanZarathustra
    Nov 27 at 13:20






  • 3




    You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
    – yurnero
    Nov 27 at 13:50








  • 1




    From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
    – StubbornAtom
    Nov 27 at 16:14















up vote
1
down vote

favorite












Find variance of unbiased estimator L, where $L = dfracpi4sqrt{X_1X_2}$.



$f(x) = dfrac1theta e^{frac{-x}{theta}}$, $x>0$,



$X_1$ and $X_2$ are independent, and exponentially distributed.



Since $L$ is unbiased so I know $E[L] = theta$, right?



Also, $operatorname{Var}[x] = E[x^2] - E[x]^2$. But I'm struggling with finding $E[x^2]$. Any help will be appreciated. Thank you.










share|cite|improve this question




















  • 1




    How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
    – jesterII
    Nov 27 at 11:59










  • @jesterll edited.
    – OvermanZarathustra
    Nov 27 at 13:20






  • 3




    You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
    – yurnero
    Nov 27 at 13:50








  • 1




    From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
    – StubbornAtom
    Nov 27 at 16:14













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Find variance of unbiased estimator L, where $L = dfracpi4sqrt{X_1X_2}$.



$f(x) = dfrac1theta e^{frac{-x}{theta}}$, $x>0$,



$X_1$ and $X_2$ are independent, and exponentially distributed.



Since $L$ is unbiased so I know $E[L] = theta$, right?



Also, $operatorname{Var}[x] = E[x^2] - E[x]^2$. But I'm struggling with finding $E[x^2]$. Any help will be appreciated. Thank you.










share|cite|improve this question















Find variance of unbiased estimator L, where $L = dfracpi4sqrt{X_1X_2}$.



$f(x) = dfrac1theta e^{frac{-x}{theta}}$, $x>0$,



$X_1$ and $X_2$ are independent, and exponentially distributed.



Since $L$ is unbiased so I know $E[L] = theta$, right?



Also, $operatorname{Var}[x] = E[x^2] - E[x]^2$. But I'm struggling with finding $E[x^2]$. Any help will be appreciated. Thank you.







probability integration statistics variance expected-value






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 27 at 13:20

























asked Nov 27 at 10:41









OvermanZarathustra

156




156








  • 1




    How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
    – jesterII
    Nov 27 at 11:59










  • @jesterll edited.
    – OvermanZarathustra
    Nov 27 at 13:20






  • 3




    You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
    – yurnero
    Nov 27 at 13:50








  • 1




    From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
    – StubbornAtom
    Nov 27 at 16:14














  • 1




    How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
    – jesterII
    Nov 27 at 11:59










  • @jesterll edited.
    – OvermanZarathustra
    Nov 27 at 13:20






  • 3




    You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
    – yurnero
    Nov 27 at 13:50








  • 1




    From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
    – StubbornAtom
    Nov 27 at 16:14








1




1




How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
– jesterII
Nov 27 at 11:59




How can the "estimator" $L$ depend on the quantity $theta$ being estimated?
– jesterII
Nov 27 at 11:59












@jesterll edited.
– OvermanZarathustra
Nov 27 at 13:20




@jesterll edited.
– OvermanZarathustra
Nov 27 at 13:20




3




3




You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
– yurnero
Nov 27 at 13:50






You are given $E(L)$. Now look at $E(L^2)=text{const.}E(X_1X_2)$. Now use the independence of $X_1$ and $X_2$. The variance of $L$ is $E(L^2)-E(L)^2$.
– yurnero
Nov 27 at 13:50






1




1




From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
– StubbornAtom
Nov 27 at 16:14




From $operatorname{Var}(L)=frac{pi^2}{16}operatorname{Var}(sqrt{X_1X_2})=frac{pi^2}{16}left[E(X_1X_2)-(E(sqrt{X_1X_2}))^2right]$, the only thing that needs calculating is $E(sqrt{X_1})$. Where is the problem?
– StubbornAtom
Nov 27 at 16:14










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
newcommand{dd}{mathrm{d}}
newcommand{ds}[1]{displaystyle{#1}}
newcommand{expo}[1]{,mathrm{e}^{#1},}
newcommand{ic}{mathrm{i}}
newcommand{mc}[1]{mathcal{#1}}
newcommand{mrm}[1]{mathrm{#1}}
newcommand{pars}[1]{left(,{#1},right)}
newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
newcommand{root}[2]{,sqrt[#1]{,{#2},},}
newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
newcommand{verts}[1]{leftvert,{#1},rightvert}$

begin{align}
mathbb{E}bracks{L} & equiv
int_{0}^{infty}{expo{-x_{1}/theta} over theta}
int_{0}^{infty}{expo{-x_{2}/theta} over theta}
pars{{pi over 4}root{x_{1}x_{2}}}dd x_{1},dd x_{2}
\[5mm] & =
{pi over 4}pars{root{theta}
int_{0}^{infty}expo{-x_{1}/theta}
,root{x_{1} over theta},{dd x_{1} over theta}}
\[2mm] & phantom{===,}
pars{root{theta}
int_{0}^{infty}expo{-x_{2}/theta},root{x_{2} over theta}
,{dd x_{2} over theta}}
\[5mm] & =
{pi over 4}
underbrace{pars{int_{0}^{infty}x^{1/2}expo{-x}dd x}^{2}}
_{ds{= Gamma^{2}pars{3/2} = {pi/4}}} theta =
bbx{{pi^{2} over 16},theta}
\[1cm]
mathbb{E}bracks{L^{2}} & equiv
int_{0}^{infty}{expo{-x_{1}/theta} over theta}
int_{0}^{infty}{expo{-x_{2}/theta} over theta}
pars{{pi over 4}root{x_{1}x_{2}}}^{2}dd x_{1},dd x_{2}
\[5mm] & =
{pi^{2} over 16}pars{thetaint_{0}^{infty}
expo{-x_{1}/theta},{x_{1} over theta}
,{dd x_{1} over theta}}
pars{thetaint_{0}^{infty}
expo{-x_{2}/theta},{x_{1} over theta}
,{dd x_{2} over theta}}
\[5mm] & =
bbx{{pi^{2} over 16},theta^{2}}
\[1cm]
mbox{Var}pars{L} & =
bbx{{pi^{2} over 16}pars{1 - {pi^{2} over 16}}theta^{2}}
end{align}






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015630%2fvariance-of-an-unbiased-estimator-l-frac-pi4-sqrtx-1x-2%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
    newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
    newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
    newcommand{dd}{mathrm{d}}
    newcommand{ds}[1]{displaystyle{#1}}
    newcommand{expo}[1]{,mathrm{e}^{#1},}
    newcommand{ic}{mathrm{i}}
    newcommand{mc}[1]{mathcal{#1}}
    newcommand{mrm}[1]{mathrm{#1}}
    newcommand{pars}[1]{left(,{#1},right)}
    newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
    newcommand{root}[2]{,sqrt[#1]{,{#2},},}
    newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
    newcommand{verts}[1]{leftvert,{#1},rightvert}$

    begin{align}
    mathbb{E}bracks{L} & equiv
    int_{0}^{infty}{expo{-x_{1}/theta} over theta}
    int_{0}^{infty}{expo{-x_{2}/theta} over theta}
    pars{{pi over 4}root{x_{1}x_{2}}}dd x_{1},dd x_{2}
    \[5mm] & =
    {pi over 4}pars{root{theta}
    int_{0}^{infty}expo{-x_{1}/theta}
    ,root{x_{1} over theta},{dd x_{1} over theta}}
    \[2mm] & phantom{===,}
    pars{root{theta}
    int_{0}^{infty}expo{-x_{2}/theta},root{x_{2} over theta}
    ,{dd x_{2} over theta}}
    \[5mm] & =
    {pi over 4}
    underbrace{pars{int_{0}^{infty}x^{1/2}expo{-x}dd x}^{2}}
    _{ds{= Gamma^{2}pars{3/2} = {pi/4}}} theta =
    bbx{{pi^{2} over 16},theta}
    \[1cm]
    mathbb{E}bracks{L^{2}} & equiv
    int_{0}^{infty}{expo{-x_{1}/theta} over theta}
    int_{0}^{infty}{expo{-x_{2}/theta} over theta}
    pars{{pi over 4}root{x_{1}x_{2}}}^{2}dd x_{1},dd x_{2}
    \[5mm] & =
    {pi^{2} over 16}pars{thetaint_{0}^{infty}
    expo{-x_{1}/theta},{x_{1} over theta}
    ,{dd x_{1} over theta}}
    pars{thetaint_{0}^{infty}
    expo{-x_{2}/theta},{x_{1} over theta}
    ,{dd x_{2} over theta}}
    \[5mm] & =
    bbx{{pi^{2} over 16},theta^{2}}
    \[1cm]
    mbox{Var}pars{L} & =
    bbx{{pi^{2} over 16}pars{1 - {pi^{2} over 16}}theta^{2}}
    end{align}






    share|cite|improve this answer

























      up vote
      1
      down vote



      accepted










      $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
      newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
      newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
      newcommand{dd}{mathrm{d}}
      newcommand{ds}[1]{displaystyle{#1}}
      newcommand{expo}[1]{,mathrm{e}^{#1},}
      newcommand{ic}{mathrm{i}}
      newcommand{mc}[1]{mathcal{#1}}
      newcommand{mrm}[1]{mathrm{#1}}
      newcommand{pars}[1]{left(,{#1},right)}
      newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
      newcommand{root}[2]{,sqrt[#1]{,{#2},},}
      newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
      newcommand{verts}[1]{leftvert,{#1},rightvert}$

      begin{align}
      mathbb{E}bracks{L} & equiv
      int_{0}^{infty}{expo{-x_{1}/theta} over theta}
      int_{0}^{infty}{expo{-x_{2}/theta} over theta}
      pars{{pi over 4}root{x_{1}x_{2}}}dd x_{1},dd x_{2}
      \[5mm] & =
      {pi over 4}pars{root{theta}
      int_{0}^{infty}expo{-x_{1}/theta}
      ,root{x_{1} over theta},{dd x_{1} over theta}}
      \[2mm] & phantom{===,}
      pars{root{theta}
      int_{0}^{infty}expo{-x_{2}/theta},root{x_{2} over theta}
      ,{dd x_{2} over theta}}
      \[5mm] & =
      {pi over 4}
      underbrace{pars{int_{0}^{infty}x^{1/2}expo{-x}dd x}^{2}}
      _{ds{= Gamma^{2}pars{3/2} = {pi/4}}} theta =
      bbx{{pi^{2} over 16},theta}
      \[1cm]
      mathbb{E}bracks{L^{2}} & equiv
      int_{0}^{infty}{expo{-x_{1}/theta} over theta}
      int_{0}^{infty}{expo{-x_{2}/theta} over theta}
      pars{{pi over 4}root{x_{1}x_{2}}}^{2}dd x_{1},dd x_{2}
      \[5mm] & =
      {pi^{2} over 16}pars{thetaint_{0}^{infty}
      expo{-x_{1}/theta},{x_{1} over theta}
      ,{dd x_{1} over theta}}
      pars{thetaint_{0}^{infty}
      expo{-x_{2}/theta},{x_{1} over theta}
      ,{dd x_{2} over theta}}
      \[5mm] & =
      bbx{{pi^{2} over 16},theta^{2}}
      \[1cm]
      mbox{Var}pars{L} & =
      bbx{{pi^{2} over 16}pars{1 - {pi^{2} over 16}}theta^{2}}
      end{align}






      share|cite|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        mathbb{E}bracks{L} & equiv
        int_{0}^{infty}{expo{-x_{1}/theta} over theta}
        int_{0}^{infty}{expo{-x_{2}/theta} over theta}
        pars{{pi over 4}root{x_{1}x_{2}}}dd x_{1},dd x_{2}
        \[5mm] & =
        {pi over 4}pars{root{theta}
        int_{0}^{infty}expo{-x_{1}/theta}
        ,root{x_{1} over theta},{dd x_{1} over theta}}
        \[2mm] & phantom{===,}
        pars{root{theta}
        int_{0}^{infty}expo{-x_{2}/theta},root{x_{2} over theta}
        ,{dd x_{2} over theta}}
        \[5mm] & =
        {pi over 4}
        underbrace{pars{int_{0}^{infty}x^{1/2}expo{-x}dd x}^{2}}
        _{ds{= Gamma^{2}pars{3/2} = {pi/4}}} theta =
        bbx{{pi^{2} over 16},theta}
        \[1cm]
        mathbb{E}bracks{L^{2}} & equiv
        int_{0}^{infty}{expo{-x_{1}/theta} over theta}
        int_{0}^{infty}{expo{-x_{2}/theta} over theta}
        pars{{pi over 4}root{x_{1}x_{2}}}^{2}dd x_{1},dd x_{2}
        \[5mm] & =
        {pi^{2} over 16}pars{thetaint_{0}^{infty}
        expo{-x_{1}/theta},{x_{1} over theta}
        ,{dd x_{1} over theta}}
        pars{thetaint_{0}^{infty}
        expo{-x_{2}/theta},{x_{1} over theta}
        ,{dd x_{2} over theta}}
        \[5mm] & =
        bbx{{pi^{2} over 16},theta^{2}}
        \[1cm]
        mbox{Var}pars{L} & =
        bbx{{pi^{2} over 16}pars{1 - {pi^{2} over 16}}theta^{2}}
        end{align}






        share|cite|improve this answer












        $newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},}
        newcommand{braces}[1]{leftlbrace,{#1},rightrbrace}
        newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack}
        newcommand{dd}{mathrm{d}}
        newcommand{ds}[1]{displaystyle{#1}}
        newcommand{expo}[1]{,mathrm{e}^{#1},}
        newcommand{ic}{mathrm{i}}
        newcommand{mc}[1]{mathcal{#1}}
        newcommand{mrm}[1]{mathrm{#1}}
        newcommand{pars}[1]{left(,{#1},right)}
        newcommand{partiald}[3]{frac{partial^{#1} #2}{partial #3^{#1}}}
        newcommand{root}[2]{,sqrt[#1]{,{#2},},}
        newcommand{totald}[3]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}}
        newcommand{verts}[1]{leftvert,{#1},rightvert}$

        begin{align}
        mathbb{E}bracks{L} & equiv
        int_{0}^{infty}{expo{-x_{1}/theta} over theta}
        int_{0}^{infty}{expo{-x_{2}/theta} over theta}
        pars{{pi over 4}root{x_{1}x_{2}}}dd x_{1},dd x_{2}
        \[5mm] & =
        {pi over 4}pars{root{theta}
        int_{0}^{infty}expo{-x_{1}/theta}
        ,root{x_{1} over theta},{dd x_{1} over theta}}
        \[2mm] & phantom{===,}
        pars{root{theta}
        int_{0}^{infty}expo{-x_{2}/theta},root{x_{2} over theta}
        ,{dd x_{2} over theta}}
        \[5mm] & =
        {pi over 4}
        underbrace{pars{int_{0}^{infty}x^{1/2}expo{-x}dd x}^{2}}
        _{ds{= Gamma^{2}pars{3/2} = {pi/4}}} theta =
        bbx{{pi^{2} over 16},theta}
        \[1cm]
        mathbb{E}bracks{L^{2}} & equiv
        int_{0}^{infty}{expo{-x_{1}/theta} over theta}
        int_{0}^{infty}{expo{-x_{2}/theta} over theta}
        pars{{pi over 4}root{x_{1}x_{2}}}^{2}dd x_{1},dd x_{2}
        \[5mm] & =
        {pi^{2} over 16}pars{thetaint_{0}^{infty}
        expo{-x_{1}/theta},{x_{1} over theta}
        ,{dd x_{1} over theta}}
        pars{thetaint_{0}^{infty}
        expo{-x_{2}/theta},{x_{1} over theta}
        ,{dd x_{2} over theta}}
        \[5mm] & =
        bbx{{pi^{2} over 16},theta^{2}}
        \[1cm]
        mbox{Var}pars{L} & =
        bbx{{pi^{2} over 16}pars{1 - {pi^{2} over 16}}theta^{2}}
        end{align}







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 27 at 16:39









        Felix Marin

        66.7k7107139




        66.7k7107139






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3015630%2fvariance-of-an-unbiased-estimator-l-frac-pi4-sqrtx-1x-2%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh