Finding eigenvalues of the laplacian operator
up vote
0
down vote
favorite
In order to find the engenvalues of the laplacian, this is what I did:
$$nabla u = -lambda u, (x^2 + y^2 <1)\u = 0, (x^2 + y^2 =1)$$
In order to solve this problem, I worked with the polar coordinate change of variables:
$$u(r,theta) = R(r)Theta(theta)$$
then the problem becomes $$u_{rr}+frac{1}{r}u_r + frac{1}{r^2}u_{thetatheta} = -lambda(R(r)Theta(theta))$$
which becomes
$$frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$$
Now do
$$frac{Theta''}{Theta} = -gammaimplies Theta'' +gammaTheta = 0$$ $$R''+frac{1}{r}R'+(lambda-frac{gamma}{r^2})R=0$$
The characteristic equation for $Theta''+ gammaTheta = 0$ is $p^2 + gamma=0$ or $p=pmsqrt{-gamma}$. We have a feasible solution only when $gamma>0$ (WHY?) thus $$Theta(theta) = Acossqrt{gamma}theta + Bsinsqrt{gamma}theta$$
which implies that $sqrt{gamma} = nin mathbb{N}$ due to the $2pi$-periodicity Finally we arrive at $$Theta(theta) = begin{cases}frac{1}{2}A_0,& n=0\A_ncos ntheta + B_nsin ntheta,& nin mathbb{N}end{cases}$$ for appropriate constants $A_0, A_n, B_n$
Next we solve $frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$ for $0le r < 1$. We impose that at the origin, $R(0)$ is finite. Also, the Dirichlet Boundary conditions require $R(1)=0$. We know that the Dirichlet-Laplacian eigenvalues are positive, so $lambda >0$
Now let us use the change of variable: $rho = sqrt{lambda} r$ which results in $R_r = R_{rho}frac{drho}{dr} = sqrt{lambda}R_{rho}, R_{rr} = lambda R_{rhorho}$
Now the equation can be rewritten as $$R_{rhorho}+frac{1}{rho}R_{rho} + (1-frac{n^2}{rho^2})R=0$$
which is the Bessel Equation which has solution $R(rho) = J_n(rho)$ where
$$J_n(rho) = sum_{k=0}^{infty} frac{(-1)^k}{k!(n+k)!}left(frac{rho}{2}right)^{n+2k}$$
So for $n$ in general $$u(r,theta) =
R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_n(frac{rho}{sqrt{lambda}})(A_ncos ntheta + B_nsin ntheta)$$
and for the case $n=0$:
$$u(r,theta) = R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_0(frac{rho}{sqrt{lambda}})(frac{1}{2}A_0)$$
Is this solution right? It seems kinda different from this solution in the page 5 where it shows the eigenvalues and eigenvectors
real-analysis differential-equations proof-verification pde
|
show 4 more comments
up vote
0
down vote
favorite
In order to find the engenvalues of the laplacian, this is what I did:
$$nabla u = -lambda u, (x^2 + y^2 <1)\u = 0, (x^2 + y^2 =1)$$
In order to solve this problem, I worked with the polar coordinate change of variables:
$$u(r,theta) = R(r)Theta(theta)$$
then the problem becomes $$u_{rr}+frac{1}{r}u_r + frac{1}{r^2}u_{thetatheta} = -lambda(R(r)Theta(theta))$$
which becomes
$$frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$$
Now do
$$frac{Theta''}{Theta} = -gammaimplies Theta'' +gammaTheta = 0$$ $$R''+frac{1}{r}R'+(lambda-frac{gamma}{r^2})R=0$$
The characteristic equation for $Theta''+ gammaTheta = 0$ is $p^2 + gamma=0$ or $p=pmsqrt{-gamma}$. We have a feasible solution only when $gamma>0$ (WHY?) thus $$Theta(theta) = Acossqrt{gamma}theta + Bsinsqrt{gamma}theta$$
which implies that $sqrt{gamma} = nin mathbb{N}$ due to the $2pi$-periodicity Finally we arrive at $$Theta(theta) = begin{cases}frac{1}{2}A_0,& n=0\A_ncos ntheta + B_nsin ntheta,& nin mathbb{N}end{cases}$$ for appropriate constants $A_0, A_n, B_n$
Next we solve $frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$ for $0le r < 1$. We impose that at the origin, $R(0)$ is finite. Also, the Dirichlet Boundary conditions require $R(1)=0$. We know that the Dirichlet-Laplacian eigenvalues are positive, so $lambda >0$
Now let us use the change of variable: $rho = sqrt{lambda} r$ which results in $R_r = R_{rho}frac{drho}{dr} = sqrt{lambda}R_{rho}, R_{rr} = lambda R_{rhorho}$
Now the equation can be rewritten as $$R_{rhorho}+frac{1}{rho}R_{rho} + (1-frac{n^2}{rho^2})R=0$$
which is the Bessel Equation which has solution $R(rho) = J_n(rho)$ where
$$J_n(rho) = sum_{k=0}^{infty} frac{(-1)^k}{k!(n+k)!}left(frac{rho}{2}right)^{n+2k}$$
So for $n$ in general $$u(r,theta) =
R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_n(frac{rho}{sqrt{lambda}})(A_ncos ntheta + B_nsin ntheta)$$
and for the case $n=0$:
$$u(r,theta) = R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_0(frac{rho}{sqrt{lambda}})(frac{1}{2}A_0)$$
Is this solution right? It seems kinda different from this solution in the page 5 where it shows the eigenvalues and eigenvectors
real-analysis differential-equations proof-verification pde
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38
|
show 4 more comments
up vote
0
down vote
favorite
up vote
0
down vote
favorite
In order to find the engenvalues of the laplacian, this is what I did:
$$nabla u = -lambda u, (x^2 + y^2 <1)\u = 0, (x^2 + y^2 =1)$$
In order to solve this problem, I worked with the polar coordinate change of variables:
$$u(r,theta) = R(r)Theta(theta)$$
then the problem becomes $$u_{rr}+frac{1}{r}u_r + frac{1}{r^2}u_{thetatheta} = -lambda(R(r)Theta(theta))$$
which becomes
$$frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$$
Now do
$$frac{Theta''}{Theta} = -gammaimplies Theta'' +gammaTheta = 0$$ $$R''+frac{1}{r}R'+(lambda-frac{gamma}{r^2})R=0$$
The characteristic equation for $Theta''+ gammaTheta = 0$ is $p^2 + gamma=0$ or $p=pmsqrt{-gamma}$. We have a feasible solution only when $gamma>0$ (WHY?) thus $$Theta(theta) = Acossqrt{gamma}theta + Bsinsqrt{gamma}theta$$
which implies that $sqrt{gamma} = nin mathbb{N}$ due to the $2pi$-periodicity Finally we arrive at $$Theta(theta) = begin{cases}frac{1}{2}A_0,& n=0\A_ncos ntheta + B_nsin ntheta,& nin mathbb{N}end{cases}$$ for appropriate constants $A_0, A_n, B_n$
Next we solve $frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$ for $0le r < 1$. We impose that at the origin, $R(0)$ is finite. Also, the Dirichlet Boundary conditions require $R(1)=0$. We know that the Dirichlet-Laplacian eigenvalues are positive, so $lambda >0$
Now let us use the change of variable: $rho = sqrt{lambda} r$ which results in $R_r = R_{rho}frac{drho}{dr} = sqrt{lambda}R_{rho}, R_{rr} = lambda R_{rhorho}$
Now the equation can be rewritten as $$R_{rhorho}+frac{1}{rho}R_{rho} + (1-frac{n^2}{rho^2})R=0$$
which is the Bessel Equation which has solution $R(rho) = J_n(rho)$ where
$$J_n(rho) = sum_{k=0}^{infty} frac{(-1)^k}{k!(n+k)!}left(frac{rho}{2}right)^{n+2k}$$
So for $n$ in general $$u(r,theta) =
R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_n(frac{rho}{sqrt{lambda}})(A_ncos ntheta + B_nsin ntheta)$$
and for the case $n=0$:
$$u(r,theta) = R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_0(frac{rho}{sqrt{lambda}})(frac{1}{2}A_0)$$
Is this solution right? It seems kinda different from this solution in the page 5 where it shows the eigenvalues and eigenvectors
real-analysis differential-equations proof-verification pde
In order to find the engenvalues of the laplacian, this is what I did:
$$nabla u = -lambda u, (x^2 + y^2 <1)\u = 0, (x^2 + y^2 =1)$$
In order to solve this problem, I worked with the polar coordinate change of variables:
$$u(r,theta) = R(r)Theta(theta)$$
then the problem becomes $$u_{rr}+frac{1}{r}u_r + frac{1}{r^2}u_{thetatheta} = -lambda(R(r)Theta(theta))$$
which becomes
$$frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$$
Now do
$$frac{Theta''}{Theta} = -gammaimplies Theta'' +gammaTheta = 0$$ $$R''+frac{1}{r}R'+(lambda-frac{gamma}{r^2})R=0$$
The characteristic equation for $Theta''+ gammaTheta = 0$ is $p^2 + gamma=0$ or $p=pmsqrt{-gamma}$. We have a feasible solution only when $gamma>0$ (WHY?) thus $$Theta(theta) = Acossqrt{gamma}theta + Bsinsqrt{gamma}theta$$
which implies that $sqrt{gamma} = nin mathbb{N}$ due to the $2pi$-periodicity Finally we arrive at $$Theta(theta) = begin{cases}frac{1}{2}A_0,& n=0\A_ncos ntheta + B_nsin ntheta,& nin mathbb{N}end{cases}$$ for appropriate constants $A_0, A_n, B_n$
Next we solve $frac{R''(r)}{R(r)}+frac{1}{r}frac{R'(r)}{R(r)}+frac{1}{r^2}frac{Theta''(theta)}{Theta(theta)} = -lambda$ for $0le r < 1$. We impose that at the origin, $R(0)$ is finite. Also, the Dirichlet Boundary conditions require $R(1)=0$. We know that the Dirichlet-Laplacian eigenvalues are positive, so $lambda >0$
Now let us use the change of variable: $rho = sqrt{lambda} r$ which results in $R_r = R_{rho}frac{drho}{dr} = sqrt{lambda}R_{rho}, R_{rr} = lambda R_{rhorho}$
Now the equation can be rewritten as $$R_{rhorho}+frac{1}{rho}R_{rho} + (1-frac{n^2}{rho^2})R=0$$
which is the Bessel Equation which has solution $R(rho) = J_n(rho)$ where
$$J_n(rho) = sum_{k=0}^{infty} frac{(-1)^k}{k!(n+k)!}left(frac{rho}{2}right)^{n+2k}$$
So for $n$ in general $$u(r,theta) =
R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_n(frac{rho}{sqrt{lambda}})(A_ncos ntheta + B_nsin ntheta)$$
and for the case $n=0$:
$$u(r,theta) = R(frac{rho}{sqrt{lambda}})Theta(theta) =
J_0(frac{rho}{sqrt{lambda}})(frac{1}{2}A_0)$$
Is this solution right? It seems kinda different from this solution in the page 5 where it shows the eigenvalues and eigenvectors
real-analysis differential-equations proof-verification pde
real-analysis differential-equations proof-verification pde
edited Nov 29 at 17:37
asked Nov 28 at 16:23
Lucas Zanella
92311330
92311330
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38
|
show 4 more comments
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38
|
show 4 more comments
1 Answer
1
active
oldest
votes
up vote
1
down vote
accepted
Your solution is correct up to the line where you introduce the Bessel functions. There you should have written
$$
R(fracρ{sqrtλ})=J_n(ρ)iff R(r)=J_n(sqrtλr).
$$
For greater clarity start earlier, when substituting $r$ with $ρ$ do not reuse the same function name for two different functions, write $R(r)=tilde R(ρ)$ where $ρ=sqrtλr$, $R_r=sqrtλtilde R_ρ$ etc., so that the Bessel equation is in $tilde R$ and its derivatives. Then its solution is $tilde R(ρ)=J_n(ρ).$ With that you get a clean back substitution
$$R(r)=tilde R(ρ)=tilde R(sqrtλr)=J_n(sqrtλr).$$
And as $R(1)=0$ we need that $sqrtλ$ is one of the roots of $J_n$.
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator isDelta
, $Delta$, whilenabla
, $nabla$, is used for the gradient.
– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017338%2ffinding-eigenvalues-of-the-laplacian-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Your solution is correct up to the line where you introduce the Bessel functions. There you should have written
$$
R(fracρ{sqrtλ})=J_n(ρ)iff R(r)=J_n(sqrtλr).
$$
For greater clarity start earlier, when substituting $r$ with $ρ$ do not reuse the same function name for two different functions, write $R(r)=tilde R(ρ)$ where $ρ=sqrtλr$, $R_r=sqrtλtilde R_ρ$ etc., so that the Bessel equation is in $tilde R$ and its derivatives. Then its solution is $tilde R(ρ)=J_n(ρ).$ With that you get a clean back substitution
$$R(r)=tilde R(ρ)=tilde R(sqrtλr)=J_n(sqrtλr).$$
And as $R(1)=0$ we need that $sqrtλ$ is one of the roots of $J_n$.
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator isDelta
, $Delta$, whilenabla
, $nabla$, is used for the gradient.
– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
add a comment |
up vote
1
down vote
accepted
Your solution is correct up to the line where you introduce the Bessel functions. There you should have written
$$
R(fracρ{sqrtλ})=J_n(ρ)iff R(r)=J_n(sqrtλr).
$$
For greater clarity start earlier, when substituting $r$ with $ρ$ do not reuse the same function name for two different functions, write $R(r)=tilde R(ρ)$ where $ρ=sqrtλr$, $R_r=sqrtλtilde R_ρ$ etc., so that the Bessel equation is in $tilde R$ and its derivatives. Then its solution is $tilde R(ρ)=J_n(ρ).$ With that you get a clean back substitution
$$R(r)=tilde R(ρ)=tilde R(sqrtλr)=J_n(sqrtλr).$$
And as $R(1)=0$ we need that $sqrtλ$ is one of the roots of $J_n$.
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator isDelta
, $Delta$, whilenabla
, $nabla$, is used for the gradient.
– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Your solution is correct up to the line where you introduce the Bessel functions. There you should have written
$$
R(fracρ{sqrtλ})=J_n(ρ)iff R(r)=J_n(sqrtλr).
$$
For greater clarity start earlier, when substituting $r$ with $ρ$ do not reuse the same function name for two different functions, write $R(r)=tilde R(ρ)$ where $ρ=sqrtλr$, $R_r=sqrtλtilde R_ρ$ etc., so that the Bessel equation is in $tilde R$ and its derivatives. Then its solution is $tilde R(ρ)=J_n(ρ).$ With that you get a clean back substitution
$$R(r)=tilde R(ρ)=tilde R(sqrtλr)=J_n(sqrtλr).$$
And as $R(1)=0$ we need that $sqrtλ$ is one of the roots of $J_n$.
Your solution is correct up to the line where you introduce the Bessel functions. There you should have written
$$
R(fracρ{sqrtλ})=J_n(ρ)iff R(r)=J_n(sqrtλr).
$$
For greater clarity start earlier, when substituting $r$ with $ρ$ do not reuse the same function name for two different functions, write $R(r)=tilde R(ρ)$ where $ρ=sqrtλr$, $R_r=sqrtλtilde R_ρ$ etc., so that the Bessel equation is in $tilde R$ and its derivatives. Then its solution is $tilde R(ρ)=J_n(ρ).$ With that you get a clean back substitution
$$R(r)=tilde R(ρ)=tilde R(sqrtλr)=J_n(sqrtλr).$$
And as $R(1)=0$ we need that $sqrtλ$ is one of the roots of $J_n$.
answered Nov 29 at 20:32
LutzL
55.1k42053
55.1k42053
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator isDelta
, $Delta$, whilenabla
, $nabla$, is used for the gradient.
– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
add a comment |
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator isDelta
, $Delta$, whilenabla
, $nabla$, is used for the gradient.
– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Is $lambda>0$ in $nabla u = -lambda u, (x^2 + y^2 <1)$? If so, why it can't be negative?
– Lucas Zanella
Dec 2 at 19:55
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator is
Delta
, $Delta$, while nabla
, $nabla$, is used for the gradient.– LutzL
Dec 2 at 20:06
Multiply with $u$, integrate, apply Green's theorem to get $$|∇u|_{L^2}^2=λ|u|_{L^2},$$ which implies that $λ>0$. You should correct the symbols, the Laplace operator is
Delta
, $Delta$, while nabla
, $nabla$, is used for the gradient.– LutzL
Dec 2 at 20:06
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Why $theta$ must be $2pi$ periodic?
– Lucas Zanella
Dec 5 at 0:47
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
Because $Θ$ is a function on a circle. To be continuous on the full circle, you need $Θ(pi)=Θ(-pi)$ and thus, in extension from $[-pi,pi]$ to $Bbb R$, $Θ(θ+2pi)=Θ(θ)$.
– LutzL
Dec 5 at 9:06
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017338%2ffinding-eigenvalues-of-the-laplacian-operator%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
You still have to evaluate the condition $J_n(frac1{sqrtλ})=0$, which gives discrete values for $λ$ which are the eigenvalues.
– LutzL
Nov 28 at 17:12
You’re change of variables is not to polar coordinates, that is assuming the form of the solution to be seperable AFTER converting to polar coordinates.
– DaveNine
Nov 29 at 1:35
@LutzL why $1$ in $frac{1}{sqrt{lambda}}$? Could you be more specific or write an answer? Thank you so much
– Lucas Zanella
Nov 29 at 14:41
You are right, I was misled by the error in your last formulas. You should have $R(r)=R(fracρ{sqrtλ})=J_n(ρ)=J_n(rsqrtλ)$, so that the boundary condition leads to $J_n(sqrtλ)=0$. One problem is that you use $R$ for two functions of differently scaled variables, and you mix the scales wrongly in the conclusion of your computation.
– LutzL
Nov 29 at 14:49
@LutzL do you know the WHY that I updated in my question?
– Lucas Zanella
Nov 29 at 17:38