How can we show that $C_c^infty(mathbb R)$ strongly separates points?
up vote
1
down vote
favorite
Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$
separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$
strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$
How can we show that $C_c^infty(mathbb R)$ strongly separates points?
It's clear that $C_c^infty(mathbb R)$ separates points.
general-topology functional-analysis analysis
|
show 1 more comment
up vote
1
down vote
favorite
Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$
separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$
strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$
How can we show that $C_c^infty(mathbb R)$ strongly separates points?
It's clear that $C_c^infty(mathbb R)$ separates points.
general-topology functional-analysis analysis
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
2
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58
|
show 1 more comment
up vote
1
down vote
favorite
up vote
1
down vote
favorite
Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$
separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$
strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$
How can we show that $C_c^infty(mathbb R)$ strongly separates points?
It's clear that $C_c^infty(mathbb R)$ separates points.
general-topology functional-analysis analysis
Let $C_b(mathbb R)$ denote the set of bounded continuous function from $mathbb R$ to $mathbb R$. We say that $Msubseteq C_b(mathbb R)$
separates points $:Leftrightarrow$ $$forall x,yinmathbb R:xne yRightarrowexists fin M:f(x)ne f(y)tag1$$
strongly separates points $:Leftrightarrow$ $$forall xinmathbb R,delta>0:exists kinmathbb N,left{f_1,ldots,f_kright}subseteq M:inf_{y:::d(x,y):ge:delta}max_{1le ile k}|f_i(x)-f_i(y)|>0tag2$$
How can we show that $C_c^infty(mathbb R)$ strongly separates points?
It's clear that $C_c^infty(mathbb R)$ separates points.
general-topology functional-analysis analysis
general-topology functional-analysis analysis
edited Nov 28 at 16:56
asked Nov 28 at 16:48
0xbadf00d
1,70241429
1,70241429
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
2
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58
|
show 1 more comment
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
2
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
2
2
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58
|
show 1 more comment
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.
Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017367%2fhow-can-we-show-that-c-c-infty-mathbb-r-strongly-separates-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.
Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
add a comment |
up vote
2
down vote
accepted
Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.
Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.
Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
Given $xinmathbb R$ and $delta>0$, take a single function $fin C^infty_c(mathbb R)$ with $f(x)=1$ and $mathrm{supp}(f)subset B(x,delta)$.
Then $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
answered Nov 28 at 17:01
Federico
4,272512
4,272512
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
add a comment |
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Oops, way to simple.
– 0xbadf00d
Nov 28 at 17:10
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
Ah those lucky days when we can actually solve something! So satisfying... :-)
– Federico
Nov 28 at 17:11
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017367%2fhow-can-we-show-that-c-c-infty-mathbb-r-strongly-separates-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Do you mean $C_b^infty$ in the places you've written $C_c^infty$?
– Trevor Gunn
Nov 28 at 16:53
Do you mean $f_i$ instead of $h_i$?
– Paul Frost
Nov 28 at 16:55
@PaulFrost Sorry, fixed that.
– 0xbadf00d
Nov 28 at 16:56
@TrevorGunn No, I mean $C_c^infty$.
– 0xbadf00d
Nov 28 at 16:56
2
Cant you just take a single $fin C^infty_c(mathbb R)$ with $f(x)=1$, $mathrm{supp}(f)subset B(x,delta)$? Then you would have $f(x)-f(y)=1$ for $d(x,y)geqdelta$.
– Federico
Nov 28 at 16:58