Fossile






Ammonite fossilisée.




Poisson (Coelodus costai) fossilisé exposé au musée d'histoire naturelle de Milan.





Libellule (Cordulagophus) fossilisée.




Poisson Priscacara liops fossilisé, visible au monument national de Fossil Butte (Nebraska).


Un fossile (dérivé du substantif du verbe latin fodere : fossile, littéralement « qui est fouillé ») est le reste minéralisé (coquille, carapace, os, dent, graine, feuilles, spore, pollen, plancton, micro-organismes) ou le simple moulage d'un animal ou d'un végétal conservé dans une roche sédimentaire. Les fossiles et les processus de fossilisation sont étudiés principalement dans le cadre de la paléontologie, mais aussi dans ceux de la géologie, de la préhistoire humaine et de l'archéologie.


Suivant les espèces et les périodes, les fossiles peuvent être de différentes qualités et plus ou moins abondants. Comparativement au nombre des êtres vivants décédés, le processus de fossilisation reste rare, les conditions de la fossilisation n'étant pas souvent réunies. De ce fait, les témoignages que nous apportent les fossiles sur plus de trois milliards d'années d'évolution de la vie sur Terre sont forcément lacunaires, sauf cas exceptionnel (fossilisation intégrale d'un périmètre et d'une biocénose à la suite de coulées sédimentaires sous-marines ou bien volcaniques pyroclastiques par exemple). Jusqu'ici plusieurs dizaines de milliers d'espèces de fossiles ont été identifiées, sachant qu'une espèce de fossile ne correspond pas forcément à une espèce biologique disparue, mais peut n'être qu'un juvénile, une variété, une forme larvaire, une exuvie, un œuf ou une trace de déplacement d'une même espèce vivante (voir « type »).


La fossilisation peut être plus ou moins complète selon les circonstances (par exemple, l'anoxie et la non-turbidité d'un sédiment sont des facteurs favorisant la fossilisation des parties molles) ; si la roche contenante est métamorphisée, les fossiles le seront aussi. Les restes d'êtres vivants enrobés dans l'ambre, momifiés dans du bitume ou bien congelés dans le pergélisol ne sont pas à proprement parler des fossiles, puisqu'ils ne sont pas minéralisés, mais sont assimilés à eux dans le langage courant. Quand, pour les périodes récentes, la fossilisation est inachevée, on parle de semi-fossilisation.




Sommaire






  • 1 Éléments historiques


  • 2 Localisation des sites fossilifères


  • 3 Registre fossile


    • 3.1 Rareté des fossiles


    • 3.2 Représentativité




  • 4 Fenêtre temporelle


  • 5 Les types de fossiles


    • 5.1 Ichnofossile


    • 5.2 Microfossile


    • 5.3 Résine fossile


    • 5.4 « Fossile vivant »


    • 5.5 Pseudo-fossile




  • 6 La fossilisation


    • 6.1 Processus de décomposition


    • 6.2 Processus de diagenèse fossile


    • 6.3 Processus de destruction physico-chimique


    • 6.4 Diagenèse fossile


      • 6.4.1 Nodule de carbonate et de calcaire lithographique


      • 6.4.2 Squelette d'aragonite


      • 6.4.3 Squelette de calcite


      • 6.4.4 Squelette calcaire


      • 6.4.5 Squelette de silice


      • 6.4.6 Fossile pyritisé


      • 6.4.7 Plante fossile






  • 7 Importance scientifique


  • 8 Notes et références


  • 9 Voir aussi


    • 9.1 Bibliographie


    • 9.2 Articles connexes


    • 9.3 Liens externes







Éléments historiques |





Trilobite perminéralisé (Asaphus kowalewskii)





Ammonites (Dactylioceras sp.) et Bélemnite, calcaire noir du Jura souabe.




Fossile de crevette, datant du Crétacé.




Fossile de Lethe corbieri, papillon de l'Oligocène de Provence.


Article détaillé : Histoire de la paléontologie.

Depuis la Préhistoire, l'homme a trouvé de nombreux fossiles, restes d'organismes pétrifiés par les minéraux qui les ont remplacés ou qui ont conservé leur enveloppe extérieure. Si la plupart des interprétations étaient plus ou moins fantaisistes (« os de monstres » tels les titans, géants, satyres, centaures, cyclopes, dragons, trolls ou gnomes ; traces de déluges)[1], quelques auteurs de l'Antiquité comme Aristote, les ont, d'une façon générale, interprétés correctement. Le terme « fossile » est employé depuis Pline au Ier siècle[2],[3], et son utilisation fut récupérée au XVIe siècle par Agricola, pour faire allusion à un corps enterré, que ce soient des restes d'organismes ou de minéraux intégrés dans les matériaux de la croûte terrestre. Cette situation curieuse a perduré jusqu'au début du XIXe siècle.


Léonard de Vinci comprenait néanmoins dès le XVe siècle que ces fossiles ne pouvaient pas être considérés, comme on le pensait alors en Europe, comme des témoignages du Déluge biblique. « En un tel cas », écrivait-il, « ils seraient épars dans le plus grand désordre au lieu d'être empilés en couches successives nettes comme dans des traces de crues successives »[4]. Toutefois, les deux idées essentielles à leur propos, soit leur origine organique et le fait qu'il s'agisse de témoignages de formes de vie disparues ayant existé avant le présent, n'ont pas été véritablement appréhendées avant le XVIIe siècle.


Les premiers progrès réels découlent d'une hypothèse formulée au début du XVIIIe siècle : les terrains contenant des fossiles d'animaux ou végétaux marins devaient en toute logique avoir été recouverts par la mer ou l'eau douce (notamment lors des crues), afin qu'ils s'y déposent sur le fond, s'enfoncent sur le lit sédimentaire, et soient recouverts par les couches suivantes. C'est la première fois que le fossile est envisagé comme indice stratigraphique. Toutefois, le poids de l'idée de génération spontanée, selon laquelle les espèces étaient apparues les unes après les autres et d'origine divine, empêcha une interprétation systématisée et approfondie des causes du renouvellement des espèces, tel que logiquement déduit de l'étude des fossiles.


Au XIXe siècle, Charles Lyell décrit les fossiles comme les restes d'organismes qui vivaient à une autre époque et actuellement intégrés au sein de roches sédimentaires. Cette définition reste valable, bien que désormais on accorde une plus grande ampleur au terme, en incluant les manifestations de l'activité de ces organismes tels que les excréments (coprolithes), les restes de constructions organiques, les traces d'empreintes, les impressions de parties du corps (ichnofossiles) ou même la dentelle, les squelettes ou les troncs, etc.


Ainsi l'idée d'une filiation entre les espèces fait son chemin, notamment par les écrits de Geoffroy Saint-Hilaire et Lamarck. S'opposent alors les visions créationniste, fixiste d'une part, transformiste, évolutionniste d'autre part. Le cœur de la controverse est atteint lorsqu'à la question des origines de la vie animale et végétale est mêlée celle des origines de l'Homme. C'est également au XVIIIe siècle que la paléontologie se scinda en trois grandes branches qui subsistent toujours, sous la forme de spécialités disciplinaires : la paléontologie descriptive et comparative, de Cuvier ; la paléontologie évolutive, de Lamarck ; un peu plus tard, la paléontologie stratigraphique, d'Oppel et d'Orbigny. Suit la paléogéographie vers 1830.


De la même manière que l'astronomie à la fin du Moyen Âge, les découvertes de la paléontologie ont contrarié les interprétations dogmatiques de l'Église et de certains croyants du XIXe siècle, qui lisaient les livres sacrés, codes symboliques de morale, comme s'il s'agissait de descriptions scientifiques. Aujourd'hui, cette controverse est éteinte, mais en revanche, les fossiles, la géologie tout entière, l'essentiel de la biologie et les conclusions de leurs études sont toujours réfutés par les groupes créationnistes présents en milieu chrétien (surtout néo-protestant), juif (ultra-orthodoxe) et musulman (surtout islamiste)[5]. Multidisciplinaire, organisée comme une enquête historique, l'étude des fossiles a également eu des implications importantes sur le rapport de l'Homme au temps, par exemple sur la question de l'âge de la Terre ou du vivant, ou encore sur la question des durées — l'unité temporelle de base d'un fossile est le million d'années, un laps de temps difficilement imaginable. Grâce à des progrès rapides et importants dans les techniques d'observation et d'investigation, la connaissance des fossiles et de la fossilisation au cours des temps géologiques a réalisé ses plus grandes avancées à partir du XIXe siècle.


Les fossiles sont examinés perpétuellement, à chaque fois qu'il est possible d'utiliser des techniques plus modernes. L'application de ces techniques implique parfois la modification des approches précédentes. Par exemple, à la suite d'un examen mené en 2006 avec des techniques de tomographie aux rayons X, il a été conclu que la famille qui contient les vers Markuelia avait une grande affinité avec les vers priapuliens, et est adjacent à la branche de l'évolution des Priapuliens, des Nématodes et des Arthropodes[6]. Le dernier fossile à avoir été découvert est celui de Futalognkosaurus dukei, un dinosaure du clade des Lognkosauria, fossile découvert en 2007, son squelette était intact à 70 % et est le 3e plus grand fossile au monde et aussi le plus complet d'entre eux.



Localisation des sites fossilifères |


Article détaillé : Liste de sites fossilifères.

Certaines régions du globe sont particulièrement connues pour l'abondance de leurs fossiles. Ces sites fossilifères d'une qualité exceptionnelle portent le nom de Lagerstätten (littéralement lieu de repos ou d'emmagasinage, en allemand). Ces formations résultent probablement de l'enfouissement de carcasses dans un environnement anoxique avec très peu de bactéries aérobies, ce qui a ralenti le processus de décomposition. Sur l'échelle des temps géologiques, les lagerstätten s'étendent du Cambrien à nos jours.


Parmi ces sites, on trouve notamment les marnes jurassiques de La Voulte-sur-Rhône (conservation des parties molles de céphalopodes en trois dimensions), les schistes de Maotianshan en Chine et ceux de Burgess en Colombie-Britannique[7], le calcaire lithographique de Solnhofen en Bavière. Celui-ci détient, par exemple, un des magnifiques exemples d'Archéoptéryx. Ces gisements fossilifères sont tellement rares que chacune de leur découverte ou redécouverte, bouleverse la vision de la progression de la vie.



Registre fossile |


Le registre fossile correspond à l'ensemble des fossiles existant. Il s'agit d'un petit échantillon de la vie du passé, déformée et partiale[8]. Toutefois, il ne s'agit pas d'échantillons aléatoires. Toutes les investigations paléontologiques doivent tenir compte de ces aspects pour comprendre ce qui peut être obtenu grâce à l'utilisation de fossiles et ce qui ne peut pas l'être.



Rareté des fossiles |




Dents de Megalodon et de Carcharodontosaurus.


La fossilisation est un événement extrêmement rare. En effet, une grande partie de ce qui compose un être vivant a tendance à se décomposer relativement rapidement après la mort. Pour qu'un organisme soit fossilisé, les restes doivent normalement être recouverts par les sédiments dans les plus brefs délais. Cependant, il existe des exceptions à cette règle, comme pour un organisme congelé, desséché, ou immobilisé dans un environnement anoxique (sans oxygène). Il existe plusieurs types de fossiles et de fossilisation.


En raison de l'effet combiné des processus taphonomiques et du simple hasard mathématique, la fossilisation tend à favoriser les organismes composés de parties dures, ceux qui sont particulièrement répandus sur le globe et ceux qui ont vécu pendant une longue période. D'autre part, il est très rare de trouver des fossiles de petits corps mous, d'organismes géographiquement limités ou éphémères géologiquement parlant, en raison de leur relative rareté et la faible probabilité de conservation. Les spécimens de grande taille (macrofossiles) sont plus souvent observés, déterrés et exposés, alors que les restes microscopiques (microfossiles) sont de loin les fossiles les plus courants.


Certains observateurs occasionnels furent perplexes devant la rareté des espèces transitionnelles dans le registre fossile. L'explication communément admise a été donnée par Darwin. Il a ainsi déclaré que « l'extrême imperfection du registre géologique », combiné à la courte durée et à l'aire de répartition géographique réduite des espèces de transition, conduisait à une faible probabilité de trouver beaucoup de ces fossiles. En d'autres termes, les conditions dans lesquelles se déroule la fossilisation sont assez rares et il est fort peu probable qu'un organisme donné se fossilise à sa mort. Eldredge et Gould ont développé une théorie de l'équilibre ponctué qui permet d'expliquer en partie le motif de stase et les apparitions soudaines dans le registre fossile.



Représentativité |




Cône fossilisé de Araucaria sp., datant du Jurassique.




Fossile de triolobite Phacopide (Eldredgeops rana crassituberculata). Les yeux schizochroaux à facettes ont contribué à la formulation de la théorie de l'équilibre ponctué.


Le nombre total d'espèces (y compris les plantes et les animaux) décrites et classées s'élève à 1,5 million. Ce nombre continue d'augmenter, avec près de dix mille espèces d'insectes découvertes chaque année (il y a une grande diversité d'insectes avec 850 000 espèces connues). Les spécialistes estiment qu'il n'y a qu'une centaine d'espèces d'oiseaux connues à ce jour (il y a une faible diversité d'oiseaux avec seulement 8 600 espèces connues). Pour comparaison, on estime à près de 5 millions le nombre d'espèces vivantes possibles. On ne connaît environ que 300 000 espèces de fossiles, soit 20 % du nombre d'espèces vivantes et moins de 6 % du nombre probable. Le registre fossile s'étend d'il y a 3,5 milliards d'années jusqu'à aujourd'hui, mais 99 % des fossiles ne remontent que jusqu'à 545 millions d'années. Ces chiffres sont énormes si l'on considère que le registre fossile correspond à une période correspondant à des centaines de millions d'années et que la faune et la flore vivant aujourd'hui ne représentent qu'un instantané à l'échelle des temps géologiques. Si la préservation des fossiles était bonne, on aurait davantage d'espèces fossiles que d'espèces vivantes à l'heure actuelle.


La rareté relative des espèces fossiles s'explique de plusieurs manières. Seule une fraction des fossiles découverts parvient aux scientifiques, car beaucoup sont broyés avec les roches en exploitation ou bien sont commercialisés sans avoir été étudiés. Les fossiles découverts ne représentent qu'une faible partie de ceux qui affleurent, qui eux-mêmes ne sont qu'une infime part de ceux qui gisent dans les sédiments, lesquels ne sont qu'une petite fraction de tous ceux qui se sont formés mais que la tectonique ou l'érosion ont détruit au fil du temps. Enfin les restes fossilisés ne représentent qu'une minuscule part des espèces et des individus ayant vécu, car les conditions d'une fossilisation sont rarement réunies.


On a parfois pensé que la biodiversité a été moindre dans le passé géologique, car malgré les épisodes d'extinction massive, statistiquement on constate un accroissement au fil des ères. Mais il peut s'agir d'un biais statistique, car la biodiversité se mesure au nombre de taxons décrits (espèces, genres, familles…) qui ont vécu en un lieu et au cours d'un intervalle de temps définis, or les roches récentes se trouvent dans les strates supérieures, encore peu détruites par la tectonique ou l'érosion, et plus faciles d'accès, ce qui explique pourquoi les fossiles les plus récents sont généralement les moins rares. Dans le même ordre d'idées, le nombre de paléontologues travaillant sur le Protérozoïque et le Paléozoïque ne représente qu'un très faible pourcentage des chercheurs, alors que le travail sur ces périodes est considérable ; inversement, il y a de nombreux spécialistes du Mésozoïque et, parmi ceux-ci, des Dinosaures.


Tout donne à penser que la diversité actuelle peut ne pas être significativement plus élevée que la moyenne, pour les ères géologiques remontant jusqu'au Cambrien. Par conséquent, le faible nombre d'espèces fossiles ne peut être expliqué de façon satisfaisante par l'idée que la diversité croît avec le temps. Les espèces disparaissent et sont remplacées par de nouvelles au cours des temps géologiques. Il a été suggéré qu'il faudrait un délai de 12 millions d'années pour opérer un remplacement complet de toutes les espèces. La durée de chaque biochrone se situe entre 0,5 et 5 millions d'années (2,75 Ma en moyenne). Enfin, la quantité d'espèces fossiles est estimée à :


Nombre d'espèces par biochrone x Nombre de biochrones =(5×106)×545×1062,75×106=991×106{displaystyle (5times 10^{6})times {frac {545times 10^{6}}{2,75times 10^{6}}}=991times 10^{6}}(5times 10^{6})times {frac  {545times 10^{6}}{2,75times 10^{6}}}=991times 10^{6}


Fenêtre temporelle |


Les sites fossilifère n'offrent qu'une fenêtre temporelle limitée. Aucun fait ne peut être déduit en dehors de cette fenêtre.



Les types de fossiles |





Tronc pétrifié d'Araucarioxylon arizonicum.



  • Les fossiles les plus anciens sont les stromatolithes, qui sont composées de roches créées par la sédimentation de substances (telles que le carbonate de calcium) grâce à l'activité bactérienne[9]. Celle-ci a été découverte à travers l'étude des stromatolithes actuellement produits par des tapis microbiens. La formation Gunflint contient de nombreux microfossiles, largement acceptés comme étant des restes microbiens[10].

  • Il existe de nombreux types de fossiles. Les plus courants sont les restes d'escargots ou des os transformés en pierre. Beaucoup d'entre eux montrent tous les détails originaux de la coquille ou de l'os. Les pores et autres petits espaces de leur structure sont remplis de minéraux. Les minéraux, tels que la calcite (carbonate de calcium), sont des composés chimiques qui ont été dissous dans l'eau. Lorsque l'escargot (ou l'os) passe à travers le sable ou la boue, des minéraux se déposent dans les espaces de sa structure. C'est pourquoi les fossiles sont si lourds. D'autres fossiles ont pu perdre toutes les marques de leur structure originelle. Par exemple, un escargot dont la coquille était à l'origine composée de calcite peut se dissoudre complètement après avoir été enterré. L'impression laissée dans la roche peut alors se remplir par d'autres matériaux et forme une réplique exacte de l'escargot. Dans d'autres cas, l'escargot est dissous et il ne reste alors plus qu'un trou dans la pierre, une sorte de moule que les paléontologues peuvent remplir de plâtre pour découvrir à quoi ressemblait l'animal.




Nid d'Oviraptor contenant des œufs fossilisés.



  • Généralement, les fossiles ne montrent seulement que les parties rigides de l'animal ou du végétal : le tronc d'un arbre, la coquille d'un escargot ou les os d'un dinosaure. Certains fossiles sont plus complets. Si une plante ou un animal reste enfoui dans un type spécial de boue, qui ne contient pas d'oxygène, certaines des parties molles peuvent également être préservées en fossiles.



  • Bois fossile (Madagascar) 1.JPG

    Les plus spectaculaires « fossiles parfaits » sont ceux des mammouths laineux qui ont été retrouvés dans un sol gelé[11]. La viande était tellement gelée, qu'elle aurait pu être consommée, même après 20 000 ans. Par convention, on estime que les plus récents fossiles d'organismes vivaient à la fin de la dernière glaciation quaternaire (Würm), c'est-à-dire il y a quelque 13 000 ans environ. Les autres, qui datent d'une époque plus récente (néolithique, âge des métaux, etc.) sont généralement considérés comme des sous-fossiles.


Enfin, il faut aussi tenir compte des produits chimiques inclus dans les sédiments qui indiquent l'existence de certains organismes qui les sécrétaient ou en était faits. Ils représentent l'extrême limite de la notion de fossiles (marqueurs biologiques ou fossiles chimiques).



Ichnofossile |





Asteriacites, ichnogenre attribué à des étoiles de mer (groupe Cubichnia).


Les ichnofossiles sont les restes de dépôts, d'empreintes, d'œuf, de nids, de bioérosion ou de n'importe quel autre type d'impression. Ils sont l'objet d'étude de la Paléoichnologie. Les ichnofossiles présentent des caractéristiques qui les rendent facilement identifiables et permettent leur classification comme parataxons : ichnogenres et ichnoespèces. Les ichnotaxons sont des classes de pistes de fossiles regroupés suivant leurs propriétés communes : géométrie, structure, taille, type de substrat et fonctionnalité. Bien que parfois un diagnostic de l'espèce productrice de l'ichnofossile peut s'avérer ambigu, en général, il est possible de déduire au moins le groupe biologique ou le taxon supérieur auquel il appartenait.


Le terme ichnofaciès fait référence à l'association caractéristique des traces fossiles qui reflètent les conditions environnementales telles que la bathymétrie, la salinité et le type de substrat[12]. Les traces et les empreintes d'invertébrés marins constituent d'excellents indicateurs paléoécologiques. En effet, elles sont le résultat de l'activité de ces organismes, en liaison avec leur environnement spécifique (nature du substrat et conditions du milieu aquatique : salinité, température, bathymétrie). En particulier, la profondeur de la mer conditionne le type d'organismes qui vont s'y développer et, par conséquent, il n'est pas surprenant que l'on puisse distinguer une gamme d'ichnofaciès suivant la bathymétrie, dont la nomenclature due à Seilacher fait référence aux types de pistes les plus fréquentes et les plus caractéristiques[13].



Microfossile |




Microfossiles de sédiments marins provenant de l'Antarctique (diamètre moyen des petites sphères : 0,5 mm).


Le microfossile est une plante ou un animal fossilisé trop petit pour être analysé à l'œil nu. On applique communément un seuil de taille pour distinguer les microfossiles des macrofossiles, 1 mm, mais il ne s'agit que d'un guide approximatif. Les microfossiles peuvent être soit des organismes complets (ou quasi complets), comme les foraminifère planctoniques ou benthiques, les ostracodes, soit des parties isolées de petits ou grands organismes, plantes ou animaux, comme les coccolithophoridé (restes calcaires de petites algues), les spicules de spongiaires, les pièces pédicellaires d'échinides, les oscicules d'ophiurides ou d'astérides, les spicules d'Holothurides, les petites dents, les écailles de petits poissons ou les spores. Les microfossiles sont, par leur abondance et leur diversité, d'une grande importance pour les biostratigraphes. Ceux-ci les utilisent pour dater des roches sédimentaires et donc corréler des séries sédimentaires. Ils les utilisent aussi comme indicateurs paléoenvironnementaux (salinité, profondeur des mers et océans, paléoclimat)...


Les microfossiles peuvent être scindés en eucaryotes et procaryotes. Les procaryotes relativement petits puisqu'unicellulaires sont de loin les plus fréquents. Ils sont parfois représentés par des tests aux formes très complexes (« grands foraminifères »). Ce sont principalement par des restes dissociés que les eucaryotes sont retrouvés en micropaléontologie.



Résine fossile |




Un moustique et une mouche inclus dans de l'ambre, datant de 40-60 millions d'années.


La résine fossile (aussi appelé ambre) est un polymère naturel que l'on rencontre dans plusieurs types de strates différentes, partout dans le monde. Il s'agit de résine fossilisée provenant de la sève des arbres et datant pour la plupart du Tertiaire (2-5 millions d'années), voire du Trias (200 millions d'années). On le trouve généralement sous forme de pierres jaune-orangé.


On estime que la résine est une adaptation évolutive des arbres pour la protection contre les insectes et l'étanchéité des blessures causées par les éléments. La résine fossile contient souvent d'autres fossiles, appelés inclusions, qui ont été capturés par la résine collante. Il s'agit notamment de bactéries, de champignons, de plantes ou d'animaux. Les inclusions animales sont généralement de petits invertébrés, principalement les arthropodes comme les insectes et les araignées, et très rarement des vertébrés comme un petit lézard.



« Fossile vivant » |




Nautile.


Le terme de fossile vivant est inexact mais couramment utilisé pour qualifier une espèce vivante qui présente des ressemblances morphologiques avec des fossiles retrouvés. En règle générale, il s'agit d'espèces qui ont très peu évolué, du point de vue morphologique, au cours du temps. On parle ainsi plutôt de panchronisme. Les brachiopodes sont de parfaits exemples de panchronisme. On peut aussi citer les lingulata (dont des fossiles datant de 200 millions d'années ont été retrouvés), les triops ou les cœlacanthes, qui ont surpris lors de leur découverte le long des côtes africaines en 1938, alors qu'on les pensait disparus depuis 70 millions d'années.


Ce peut donc être une espèce ou un taxon connu uniquement sous forme de fossiles avant que des représentants vivants ne soient découverts (cœlacanthe, monoplacophore primitif, Ginkgo biloba, ...), une espèce vivante sans aucun proche parent (cagou de Nouvelle-Calédonie, caurale soleil, ...) ou un petit groupe d'espèces étroitement liées sans proche parent (stromatolithe, lingulata, nautile, Psilotum, limule, sphénodon...).



Pseudo-fossile |





Dendrites de manganèse à la surface d'une dalle de calcaire lithographique du type Solnhofen, couramment employé en terrassement.


Un pseudo-fossile est un motif que l'on peut observer sur une roche mais qui est le résultat d'un processus géologique, plus que biologique. Ils peuvent facilement être confondus avec de vrais fossiles. Certains pseudo-fossiles, tels que les dendrites, sont formés par des fissures qui se produisent naturellement dans la roche et qui se remplissent par percolation des minéraux. Parmi les autres types de pseudo-fossiles, on peut également citer les reins de minerai (formes rondes dans le minerai de fer) ou l'agate mousse, qui ressemble à de la mousse ou des feuilles coincées dans une agate. Des concrétions, sphériques ou ovoïdes, en forme de nodules dans certaines couches sédimentaires ont déjà été considérées comme étant des œufs de dinosaures et sont également souvent confondus avec des fossiles.


Les erreurs d'interprétation dues aux pseudo-fossiles vont générer plusieurs controverses tout au long de l'histoire de la paléontologie. Ainsi, en 2003, un groupe de géologues espagnols a remis en question l'authenticité des fossiles de Warrawoona. Selon William Schopf, il s'agirait de cyanobactéries qui seraient les premières traces de vie sur la Terre, il y 3,5 milliards d'années. Le groupe espagnol affirme, pour sa part, qu'un sel de baryum et un silicate, placé dans un environnement alcalin, à température et pression ambiante, peut produire des structures filamenteuses similaires[14].



La fossilisation |


Elle commence, à certaines conditions, avec la mort de l'animal. Curieusement les fossiles osseux sont parfois densément et localement rassemblés en grande quantité. Il y a plus de 70 millions d’années, de grandes quantités d’animaux (dinosaures notamment) semblent s’être noyés ou avoir été enfouis dans de la vase puis fossilisés ; les paléontologues en retrouvent des restes parfois très nombreux, comme au début des années 2000 dans la formation géologique « Maevarano » au Nord-Ouest de Madagascar[15]. Une partie du site malgache (notamment étudié par Raymond Rogers, géologue du Macalester College de St. Paul) est extraordinairement « fossilifère » : 1 200 spécimens ont été trouvés dans une même couche sur une surface pas plus grande que le tiers d'un terrain de tennis ! Les paléontologues se demandent pourquoi tant d'animaux sont morts à la fois dans ces lieux[15]. On invoque généralement les inondations, des catastrophes volcaniques, des coulées de boues ou des sécheresses dramatiques suivies de pluies diluviennes qui auraient rapidement enfoui les cadavres de grands et petits animaux, ou encore des bulles géantes de CO2 asphyxiant remontant d’un grand lac… mais une autre hypothèse a été avancée en 2017 pour expliquer ces mortalités « massives » et répétées[15]. Les gros et petits animaux y sont curieusement morts les uns contre les autres, ils semblent avoir été tués sans discrimination (ce qui fait penser à un poison agissant très rapidement, capable de faite tomber des oiseaux du ciel… de manière répétée puisque plusieurs lits d’os se superposent les uns aux autres)[15].


De simples proliférations de micro algues toxiques auraient-elles pu tuer ces animaux (et peut-être même les avoir attirés)? Pour tester cette hypothèse on a recherché des traces fossiles de blooms (pullulations) de ces microalgues, mais de telles traces sont difficiles à mettre en évidence. Rogers note que certains animaux ont une posture arquée inhabituelle pour un animal mourant[15]. Un dos arqué évoque les convulsions qu’on observe aujourd’hui lors de certains empoisonnements de vaches ayant bu de l’eau contaminée par certaines cyanobactéries. Rogers a aussi trouvé des croûtes inhabituelles de carbonates pouvant faire évoquer la présence d’un biofilm d’algues et/ou de bactéries encroutantes[15]. Le grand nombre d'oiseaux morts est également intriguant (aujourd’hui on ne voit que très rarement dans la nature des oiseaux morts de mort naturelle, tout particulièrement dans l’eau (les oiseaux se cachent pour mourir). Rogers pense donc que le criminel pourrait être une microalgue ayant périodiquement pullulé sur le même site[15].


Ce phénomène était connu en mer avec le phénomène de « zones mortes » : des centaines de restes de baleines et d'autres animaux marins se sont ainsi déposés devant l’actuel Chili, il y a 11 millions d'années et un nombre croissant de zones marines mortes est actuellement observé depuis quelques décennies dans le monde. Wighart von Koenigswald, paléontologue à l'Université de Bonn (Allemagne) cité par la revue Science se demande si des cyanotoxines ne pourraient pas expliquer le fameux gisement de Messel (des fosses datant de l’Éocène emplies de fossiles dont d'oiseaux et de chauves-souris). Des tortues en train de copuler et des juments enceintes y ont été trouvées sur différentes niveaux (ce qui implique que le phénomène s’est reproduit et dans ces cas en période de reproduction.


Cependant à Madagascar la preuve directe d’algues ou de toxines manque encore[15]. Rogers songe à tenter d’en retrouver des traces fossiles (chimiques ou via des biomarqueurs)[15].




Exemple de thanatocénose ; dalle triasique ou jurassique à Ammonoidea in situ, sous le pont de Fressac sur la rivière Conturby (Gard, France).


La fossilisation des êtres vivants est en général un processus de minéralisation (remplacement des tissus vivants par des substances minérales) dans de la roche sédimentaire qui est la roche par excellence pour la conservation de fossiles. Dans des cas plutôt rares, on peut avoir une conservation de la matière organique (mammouth dans le pergélisol, momification dans du bitume, la diatomite (roche siliceuse), inclusion dans de l'ambre). Dans d'autres cas, ce ne sont que des traces d'activité biologique qui sont conservées (paléoichnologie).



Processus de décomposition |




Moulage en plâtre du squelette fossile d'un Tarbosaurus au musée westphalien d'Histoire naturelle à Münster. L'original est conservé à Moscou, au musée Orlov de paléontologie.


La capacité de conservation des fossiles est en grande partie due au processus de décomposition des organismes. Celui-ci explique pourquoi il est rare de retrouver des fossiles des parties molles organiques (60 % des individus d'une communauté marine sont uniquement composés de parties molles). La présence des parties molles est alors le résultat de conditions sédimentologiques et diagénétiques exceptionnelles.


Les processus de décomposition aérobie sont les plus rapides et les plus efficaces pour la biodégradation. Ainsi, il est nécessaire d'avoir un environnement anoxique pour pouvoir préserver des organismes faiblement minéralisés et des parties molles. La demande en oxygène pour la décomposition en milieu aérobie est très élevée (106 moles de O2 pour 1 mole de carbone organique) :


(CH2O)106(NH3)16H3PO4 + 106 O2 → 106 CO2 + 16 NH3 + H3PO4 + 106 H2O.


La décomposition est la source principale de perte de données dans le registre fossile et la minéralisation est le seul moyen de la freiner. Les tissus peuvent se conserver sous la forme de perminéralisations (déchets organiques altérés) ou, quand la détérioration est prolongée, sous la forme d'empreintes. Si la décomposition est plus importante que la minéralisation, les tissus sont détruits et seuls les matériaux réfractaires (chitine, lignine ou cellulose) sont conservés.


La décomposition dans le registre fossile se caractérise à trois niveaux. Dans un premier temps, il s'agit d'identifier la décomposition et la perte d'information sur la structure de l'organisme fossilisé. Ensuite, il faut reconnaître les minéraux particuliers et les marqueurs géochimiques associés aux régimes particuliers de décomposition. Enfin, il faut garantir la préservation des microbes fossiles impliqués dans le processus[pas clair].


La matière organique se recycle en majeure partie à l'intérieur de la colonne d'eau, en particulier dans la zone euphotique. Une petite proportion de la matière organique produite sert à la formation des sédiments adjacents et est affectée par les modifications du flux organique (biostratinomique) telles que la photo-oxydation, l'activité microbienne et les organismes détritivores.



Processus de diagenèse fossile |





Catellocaula vallata, organisme à corps mou (trous en forme d'étoile), préservé par bioimurration [réf. nécessaire] dans un squelette de bryozoaire, datant de l'Ordovicien Supérieur[16].



Permian Silicified Sclerobionts.JPG


En plus des lipides, la matière organique comprend également des biopolymères, comme les glucides, les protéines, la lignine et la chitine, dont certains seront utilisés pour sa consommation ou modifiés par les organismes benthiques et les micro-organismes. Ceux qui ne sont pas utilisés pourront subir une polycondensation qui conduira à la formation de géopolymères qui s'intégreront au proto-kérogène (précurseur du kérogène). Lors de l'enfouissement des sédiments, la condensation s'accroît et l'insolubilité produit la lente conversion diagénétique du kérogène, constituant principal de la matière organique dans les sédiments anciens.


On trouve de grandes quantités de molécules organiques dans les sédiments et les roches sédimentaires. On les qualifie de marqueurs biologiques ou de « biomarqueurs ». Leur étude et leur identification nécessitent des techniques avancées d'investigation et d'analyse. Ces marqueurs conservent un registre très détaillé de l'activité biologique passée et ils sont liés aux molécules organiques actuelles. On trouve autant de sources possibles de marqueurs biologiques dans les échantillons que de molécules dans un organisme.


Une roche-mère est un volume rocheux qui a généré et expulsé des hydrocarbures en quantité suffisante pour former une accumulation de pétrole et de gaz. Celle-ci se compose de grès, de sables, d'argiles et de certains calcaires fins; constituants favorables à un milieu qui assimile et transforme la matière organique selon des phénomènes de réductions. On peut les expliquer par l'accumulation successive de sédiments sur la matière organique qui, peu à peu, se retrouve emprisonnée dans un milieu fermé et anaérobie. À la suite de ces transformations, une portion de la matière organique se retrouve assimilée par la roche sédimentaire, devenant partie intégrante de sa composition. Pour ce qui est de l'autre portion, les macromolécules qui la composent deviennent insolubles et inassimilables dans la roche mère, formant alors le kérogène[17]. La plupart des roches mères potentielles contiennent entre 0,8 et 2 % de carbone organique. Il est couramment admis, comme limite basse, un pourcentage de 0,4 % en volume de carbone organique pour la production d'hydrocarbures. Toutefois, la génération est plus efficace avec un pourcentage supérieur à 5-10 %. La nature des hydrocarbures générés dépend essentiellement de la composition du kérogène, qui peut être composé de deux types de matières organiques : les débris de plantes terrestres - les sédiments libèrent alors du gaz - ou d'organismes aquatiques, comme les algues, le phytoplancton, le zooplancton - auquel cas ils forment alors du pétrole (si la maturation est suffisante).



Processus de destruction physico-chimique |




Tigre à dents de sabre (Smilodon californicus) fossilisé.


La durabilité des squelettes dépend de leur résistance à la rupture et à la destruction par des agents chimiques, physiques et biotiques. Ces processus destructeurs peuvent être divisés en cinq catégories qui suivent plus ou moins l'ordre séquentiel : la désarticulation, la fragmentation, l'abrasion, la bioérosion et la corrosion/dissolution.


La désarticulation correspond à la désintégration de squelettes composés de plusieurs éléments le long des jointures ou des articulations préexistantes. Ce phénomène peut également se produire avant même la mort, comme la mue ou l'exuvie chez les arthropodes. Cette décomposition détruit les ligaments reliant les ossicules d'échinodermes en quelques heures ou quelques jours après la mort. Les ligaments, comme ceux des moules, composés de conchyoline, sont plus résistants et peuvent rester intacts pendant des mois, en dépit de la fragmentation de la coquille.


La fragmentation se produit lors d'un impact par des objets physiques et par des agents biotiques, tels que les prédateurs ou les nécrophages. Certaines formes de rupture permettent d'identifier le prédateur. Les coquilles ont tendance à se briser le long de lignes de faiblesse préexistantes, telles que les lignes de croissance ou d'ornementation. La résistance à la fragmentation dépend de plusieurs facteurs : la morphologie du squelette, la composition et la microstructure (notamment épaisseur et pourcentage de matière organique).


L'abrasion est le résultat du polissage et du concassage des éléments du squelette, qui produit un arrondissement et une perte des détails de la surface. Il y a eu des études semi-quantitatives sur les proportions de l'abrasion, en introduisant des coquilles dans un tambour rotatif, rempli de gravier siliceux[18]. Le degré d'intensité est lié à plusieurs facteurs : l'énergie du milieu, le temps d'exposition, la taille de la particule abrasive et la microstructure du squelette.




Fossile d'Eurypterus remipes.


La bioérosion ne peut se produire que si elle est associée à des fossiles reconnaissables, tels que les éponges Cliona ou les algues endolithiques. Son action destructrice est très importante dans les milieux marins peu profonds, où on peut observer une perte de masse allant de 16 à 20 % dans les coquilles des mollusques actuels. Aucune étude ne montre toutefois si les proportions étaient les mêmes au Paléozoïque, quand les éponges cliona étaient moins abondantes.


La corrosion et la dissolution est le résultat de l'instabilité chimique des minéraux qui se trouvent dans la colonne d'eau et dans les pores des sédiments. La dissolution commence à l'interface sédiment-eau avant de continuer vers l'intérieur du sédiment. La bioturbation des sédiments favorise normalement la dissolution grâce à l'introduction d'eau de mer à l'intérieur du sédiment, ce qui permet également l'oxydation des sulfures.


Dans la pratique, il est difficile de distinguer les effets de l'abrasion mécanique, de la bioérosion et de la corrosion. Certains auteurs ont ainsi proposé le terme de corrasion pour indiquer l'état général des coquilles, comme le résultat d'une combinaison de ces processus. Le grade de corrosion est proportionnel à un indice général du temps durant lequel les restes ont été exposés à ces trois processus.



Diagenèse fossile |


La compréhension des processus diagénétiques est essentielle pour l'interprétation correcte de la minéralogie originale, de la structure des squelettes et des coquilles, de leurs affinités taxonomiques et de la paléoécologie. L'un des problèmes auxquels nous sommes confrontés est très souvent de déduire ce qu'a été la minéralogie originale de groupes disparus (coraux bruts, archéocyathes, stromatopores...). La transition vers un état de fossile dépend surtout de la composition du squelette.



Nodule de carbonate et de calcaire lithographique |





Rusophycus, que l'on assimile généralement à des restes de trilobites.


La préservation des parties molles est souvent associée à la précipitation des carbonates sous la forme de nodules stratifiés, comme pour le calcaire lithographique. Les nodules de carbonates sont composés de calcite ou de sidérite, et associés aux sédiments argileux riches en micro-organismes. Ils contiennent souvent des fossiles conservés dans leurs trois dimensions, et contiennent parfois même les restes fossilisés des parties molles. Leur taille varie entre 10 et 30 centimètres, même si certains atteignant les 10 mètres ont été retrouvés (dont un Plésiosaure complet). Le contenu de micro-organismes et leur décomposition sont les principaux facteurs qui contrôlent le degré d'anoxie, le potentiel d'oxydo-réduction et le pH. En présence d'oxygène, la respiration microbienne produit du CO2 qui s'accumule dans l'eau interstitielle des sédiments, favorisant la dissolution des carbonates :


H2O + CaCO3 + CO2  {displaystyle rightleftharpoons }rightleftharpoons  2 HCO3 + Ca2+

En l'absence d'oxygène, les bactéries utilisent une série d'oxydants alternatifs dans le processus de la respiration (Mn, NO3, Fe ou SO42−). Une fois que tous les oxydants ont disparu, la fermentation devient la réaction dominante et la production de méthane augmente. Le calcaire lithographique se forme dans un environnement marin ou lacustre et se présente sous forme de fines bandes à grain fin. On peut citer comme exemple, le célèbre calcaire de Solnhofen datant du Jurassique et contenant des fossiles d'Archaeopteryx. Les dépôts de carbonate peuvent provenir de sources biogéniques (comme les algues calcaires) ou d'un précipité chimique.



Squelette d'aragonite |


Normalement, l'aragonite se transforme en calcite à travers un processus de dissolution ou de calcification. Si les eaux du gué ne sont pas saturés en carbonates, il se produit une dissolution totale du squelette et des chairs par la calcite. L'espace vide reproduit le moule d'une coquille vide et la structure de cette dernière n'est pas conservée. Il peut se former des druses avec des cristaux dirigés vers le centre. La durée de ce processus est variable. Dans le cas de la calcification, le squelette des coquilles conserve son ancienne structure (en couches ou lamelles). Il se peut même que soient préservés les cristaux d'aragonite, ce qui nous donne des renseignements très utiles. Ce remplacement se fait progressivement et respecte la structure d'origine.



Squelette de calcite |




Moulage calcitique d'une coquille de bivalve.


En général, les squelettes fossiles qui étaient constitués de calcite, conservent souvent leur composition originale (à moins qu'ils ne se silicifient ou ne se dolomitisent). La teneur en magnésium a tendance à diminuer, de sorte qu'il puisse y avoir une altération diagénique, soit à forte, soit à faible teneur en calcite. Il existe des techniques spéciales, telles que la cathodoluminescence, pour déterminer son contenu original à partir des zones qui ont conservé leur composition originale.



Squelette calcaire |


Les squelettes de carbonate de calcium peuvent se transformer en apatite sans modification de la morphologie externe. Dans les milieux naturels, cette modification diagénique est associée à des dépôts de phosphate. La transformation bactérienne des organismes calcaires en apatite a été démontrée en laboratoire. Ces observations et ces expériences suggèrent, dans un premier temps, que le phosphore nécessaire pour remplacer le carbonate par de l'apatite provient des micro-organismes des sédiments. Par ailleurs, il semble que les micro-organismes (bactéries, algues, champignons) favorisent la décomposition, en libérant des ions phosphates et en acidifiant l'eau interstitielle des sédiments. Cette acidification, qui peut être très localisée, favorise la dissolution des carbonates. Le phosphate libéré se combine avec le calcium pour former de l'apatite, préférentiellement à l'interface entre le carbone et le micro-organisme remplaçant le carbonate dissous. Ce remplacement préserve l'apparence originale de la coquille et le fluor joue un rôle important en ce qui concerne la composition finale en carbonate-fluor-apatite.



Squelette de silice |




Fossile d'un gastéropode sur lequel est accroché un ver Serpulidae, datant du Pliocène.


Le phosphatisation de la silice primaire apparaît aussi sur certains squelettes de radiolaires, bien que ce processus ne soit pas encore bien connu à l'heure actuelle. L'examen microscopique d'échantillons de phosphorites montre que de nombreux micro-organismes sans carapace minérale (algues, champignons, bactéries) se minéralisent comme l'apatite, bien qu'ils n'aient aucun précurseur minéral. Un exemple bien connu est le coprolithe phosphaté, où la matière organique est elle-même remplacée par de l'apatite qui conserve la forme exacte de l'objet. La phosphatisation des parties molles est également fréquente, notamment chez de nombreux arthropodes (copépodes, ostracodes) où des nodules calcaires et phosphatés apparaissent au sein de calcaire nodulaire ou de coprolithes de grands vertébrés.


Des études sur les phosphorites et sur la synthèse expérimentale de l'apatite ont abouti à une estimation des conditions probables de fossilisation de l'apatite. En raison de son besoin de stabilité, l'apatite se forme de préférence dans un environnement déficient en oxygène, parfois même dans des conditions totalement réductrices, comme l'indique la présence fréquente de pyrite à proximité. Cet environnement est atteint facilement dans les milieux où l'on trouve beaucoup de matière organique qui est la principale source de phosphore.


La silice peut remplacer la calcite et l'aragonite des coques et perminéraliser le bois. Il peut également se former des nodules et des couches de silex, en remplaçant les sédiments carbonés, en précipitant directement ou en remplissant les fossiles ou les inclusions. La coque peut alors être remplacées par une croûte blanche granuleuse, par une couche finement granuleuse ou par des anneaux concentriques de silice.



Fossile pyritisé |




Fossile d'Orthoceras datant du Silurien.


La pyrite sédimentaire est une composante mineure des sédiments clastiques marins. Les études actuelles sur les sédiments ont montré que la formation de la pyrite authigénique a lieu au tout début de la diagenèse, à quelques centimètres au-dessous de l'interface eau-sédiments. Une augmentation du nombre de micro-organismes et/ou de la profondeur d'enfouissement empêche la diffusion de l'oxygène dans les sédiments et les micro-organismes sont obligés de respirer en anaérobie. La minéralisation empêche la perte d'information relative à la décomposition de macro-organismes et la précipitation de la pyrite, au début de la diagenèse, est un moyen important pour la préservation des fossiles. Dans les tissus mous, comme les muscles et la chitine, il peut se produire un pyritisation au début de la diagenèse. Lorsque la décomposition est plus avancée (mais avant que ne se produise la formation de la pyrite), les tissus mous seront détruits et seuls les composés biologiques résistants (appelés réfractaires), comme la cellulose et la lignine, sont préservés. Les parties biogéniques dures, telles que les coquilles (composées de carbonate de calcium et de magnésium) et les os (phosphate de calcium) sont quelques-unes des structures biologiques les plus résistantes à la décomposition. Sur les deux, le carbonate de calcium est le plus instable et il est donc plus probable qu'il soit remplacé par la pyrite.


La formation de la pyrite est contrôlée par la concentration en carbone organique, en sulfate et en minéraux détritiques ferreux. Dans un environnement marin normal, les minéraux ferreux et les sulfates sont présents en abondance et la formation de pyrite est contrôlée par l'approvisionnement en carbone organique. Toutefois, dans les milieux en eau douce, la formation de pyrite est très limitée par la faible concentration en sulfates.



Plante fossile |





Fougère fossilisée (Pecopteris arborescens), datant du carbonifère supérieur.


Article détaillé : Plante fossile.

Les différentes parties des plantes (branches, racines, feuilles, pollen, fruits, graines) se détachent pour certaines au cours de leur vie, et pour les autres après leur mort. Une bonne compréhension des processus de dispersion qui affectent ces parties est très importante pour interpréter correctement les associations paléofloristiques. Les études sur la dispersion des feuilles par le vent montrent qu'elle dépend de leur poids et de leur forme. Les débris végétaux se conservent soit par préservation du matériel original, soit par carbonisation, soit par perminéralisation.



Importance scientifique |




Insecte (Sciaridae) piégé dans de l'ambre.


De tout temps, les fossiles ont intrigué les hommes qui, suivant les époques, leur ont donné différentes significations : talismans, restes de géants, objets maléfiques, animaux disparus lors du Déluge. Ce n'est qu'au XIXe siècle, avec les travaux de Charles Lyell, de Jean-Baptiste de Lamarck, puis de Charles Darwin et les théories de l'évolution, puis de la théorie de la tectonique des plaques, formulée par Alfred Wegener en 1915, que se met en place le cadre théorique moderne dans lequel sont étudiés les fossiles.


Pour le grand public, les fossiles sont surtout connus grâce à quelques familles caractéristiques comme les ammonites, sortes de céphalopodes marins, les trilobites de la famille des arthropodes, les oursins ou enfin les végétaux fossiles conservés dans le charbon (fougères, prêles, etc.).


Des techniques récentes comme la microphotographie et la microtomographie permettent de voir des détails impossibles à l'œil nu et de reconstituer partiellement la morphologie et le mode de nutrition des êtres vivants fossilisés. L'extraction d'ADN fossile a récemment été développée grâce à l'amplification permise par la réaction en chaîne par polymérase. Depuis la fin des années 1990, les connaissances sur ces techniques se sont améliorées[19]. L'une des techniques proposées consiste à extraire de l'ADN de l'ambre. Bien que cette idée soit actuellement irréalisable, l'imagination populaire a été nourrie à travers le livre et le film « Jurassic Park ». Dans ce livre, on suggère que les moustiques piégés dans l'ambre pourraient avoir conservé intact l'ADN d'autres animaux, tels que les dinosaures. On a cru parvenir à de bons résultats grâce à cette méthode et plusieurs études font ainsi état d'ADN datant de plus de 100 millions d'années[20], mais des études plus récentes (quoique moins médiatisées) ont montré que ces résultats n'étaient absolument pas concluants et provenaient la plupart du temps de contaminations actuelles[21].


De l'ADN peut également être extrait de cristaux présents dans les os fossilisés. Les scientifiques ont montré que parfois des cristaux se formaient à l'intérieur des os, et que ces cristaux pouvaient contenir des traces d'ADN.


L'importance de l'étude de la formation des fossiles a conduit à la fondation d'une nouvelle discipline, la taphonomie.



Notes et références |



  • (es) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en espagnol intitulé « Fósil » (voir la liste des auteurs).



  1. Dans ses conférences et interviews, Guillaume Lecointre, coordonnateur du Guide critique de l'évolution, Belin 2009, (ISBN 978-2-7011-4797-0), souligne que beaucoup de mythes ont pu apparaître à la suite d'observations sans analyse scientifique :

    • des fossiles marins en montagne ont pu donner lieu aux récits de déluges ;

    • des ammonites Ceratitida à enroulement incomplet ont été comprises comme des cornes de béliers géants (d'où leur nom) ;

    • des ossements de grande dimension ont accrédité l’existence des dragons, tarasques et géants... ;

    • des crânes d’Elephas falconeri ont pu être interprétés comme des têtes de cyclopes (la fosse nasale étant prise pour une orbite unique) comme le souligne aussi Linda Gamlin dans L'évolution, 1994, Gallimard, collection "La passion des sciences" sur Des éléphants de 90 cm au garrot citée par Stéphane Deligeorges dans La Recherche et dans Réponse à Tout, no 227, mai 2009, p. 44 ;

    • des crânes de gigantopithèques (perdus pour la science, qui ne dispose que de dents) ont pu initier du mythe du yéti évoqué par Bernard Heuvelmans dans Sur la piste des bêtes ignorées, Paris, Plon, 1955 ;

    • des tentacules flottants d’Architeuthis (décrit scientifiquement en 1857 par Japetus Steenstrup), pouvaient être interprétés comme des serpents de mer géants ou des restes de kraken, également évoqués par Bernard Heuvelmans.




  2. (es) Museo Geológico Virtual de Venezuela, « Glosario de Fósiles » (consulté le 23 décembre 2007)


  3. (en) Hortolà P., « Conceptualising ‘fossiliferous deposit’ against ‘palaeontological deposit’: some semantic (and epistemological) considerations », Historical Biology, vol. 28, no 6,‎ 2016, p. 858-860 (lire en ligne)


  4. (en) John Avery, Information theory and evolution, World scientific, 1993, (ISBN 981-238-400-6), page 3


  5. Il s'agit de groupes appelés intégristes qui interprètent les livres sacrés de leurs religions au pied de la lettre comme si c'étaient des ouvrages scientifiques : voir (en) Lovan, Dylan T Lovan : High-tech museum brings creationism to life: Biblical account is taken as scientific gospel at $25 million Creation Museum(« Un musée de pointe pour défendre le créationnisme : le récit biblique considéré comme scientifique au Creation Museum, qui a coûté 25 millions de dollars », consulté le 31 juillet 2006), les sites Site officiel du Creation Museum et Site officiel d'Answers in Genesis, et les articles Créationnisme Jeune-Terre ou Haroun Yahya


  6. (en) PCJ Donoghue, et al., Synchrotron X-ray tomographic microscopy of fossil embryos, vol. 442, Nature, 2006, p. 680-683


  7. (en) « The Burgess Shale », Universidad de Berkeley (consulté le 22 décembre 2007)


  8. (en) S.R. Fernández-López, La naturaleza del registro fósil y el análisis de las extinciones, vol. 51, Coloquios de Paleontología, 2000, p. 267-280


  9. (en) « Stromatolites, the Oldest Fossils » (consulté le 4 mars 2007).


  10. (en) A.H. Knoll, et al, New organisms from the Aphebian Gunflint Iron Formation, vol. 52, Journal of Paleontology, 1978, p. 1074-1082.


  11. (en) « 10.000 años muy bien llevados » (consulté le 22 décembre 2007).


  12. (en) R.G. Bromley, Trace fossils. Biology and Taphonomy, Londres, Unwin Hyman, 1990, 280 p..


  13. (de) A. Seilacher, Studien zur palichnologie. I. über die methoden der palichnologie. Neues Jahrb, vol. 96, Geologie Paläontologie Abhandlungen, 1953, p. 421-452.


  14. (es) « Un español replantea la forma de detectar la vida primitiva » (consulté le 27 décembre 2007).


  15. a b c d e f g h et iGramling C (2017) Did tiny algae fell mighty dinosaurs? Science Paléontologiedoi: 10.1126 / science.aap8161 |29 aout 2017.


  16. (en) T.J. Palmer et M.A. Wilson, Parasitism of Ordovician bryozoans and the origin of pseudoborings, vol. 31, Palaeontology, 1988, p. 939-949


  17. Stéphane Dubois, Les hydrocarbures dans le monde, Ellipses Édition Marketing S.A., 2007, 418 p., p. 10-11.


  18. (en) K.E. Chave, Skeletal durability and preservation, New York, John Wiley and Sons, 1964, p. 377-387.


  19. (en) boffr D. Grimaldi, DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications, Science, 1992, p. 1993-1936.


  20. (en) R.J. Cano et al., Amplification and sequencing of DNA from a 120–135-million-year-old weevil, vol. 363, Nature, 1993, p. 536-538.


  21. (en) M. B. Hebsgaard et al., Geologically ancient DNA: fact or artefact?, vol. 13, Trends in Microbiology, 2005, p. 212-220.



Voir aussi |


.mw-parser-output .autres-projets ul{margin:0;padding:0}.mw-parser-output .autres-projets li{list-style-type:none;list-style-image:none;margin:0.2em 0;text-indent:0;padding-left:24px;min-height:20px;text-align:left}.mw-parser-output .autres-projets .titre{text-align:center;margin:0.2em 0}.mw-parser-output .autres-projets li a{font-style:italic}

Sur les autres projets Wikimedia :





Bibliographie |



  • (en) D.V. Ager, Principles of paleoecology, McGraw-Hill, 1963, 371 p.

  • (en) P.A. Allison et D.E.G. Briggs, Exceptional fossil record: distribution of soft tissue preservation through the Phanerozoic, vol. 21, Geology, 1993, p. 527-530

  • (es) Mauricio Antón, El secreto de los fósiles, Aguilar, 2006(ISBN 978-84-03-09762-9)

  • (it) P. Arduini et G. Teruzzi, Fossili, Milan, Arnaldo Mondadori Editore, 1986

  • (en) R.L. Bates et J.A. Jackson, Dictionary of geological terms (Third Edition), New York, Anchor Book (Prepared by The American Geological Institute), 1984, 571 p.

  • (en) R.L. Bates et J.A. Jackson, Glossary of Geology (Third Edition), American Geological Institute, 1987, 788 p.

  • (en) D.E.G. Briggs, Extraordinary fossils, vol. 79, American Scientist, 1991, p. 130-141

  • (en) R.G. Bromley, Trace fossils, biology and taphonomy, Londres, Unwin Hyman, 1990, 280 p.

  • (es) R. Candel et al., Historia Natural: Vida de los animales, de las plantas y de la Tierra, vol. IV (geología), Instituto Gallach de Librería y Ediciones, 1963, p. 345-346

  • (en) S. Conway-Morris, The community structure of the Middle Cambrian Phyllopod Bed, vol. 29, Paleontology, 1986, p. 423-467

  • (en) M. Crichton, Jurassic Park, New York, Alfred A. Knopf, 1990(ISBN 0-394-58816-9)

  • (en) A.D. Greenwood et al., Nuclear DNA sequences from late pleistocene megafauna, vol. 16, Mol Biol Evol, 1999, p. 1466-1473

  • (en) M. Höss, Neanderthal population genetics, vol. 404, Nature, 2000, p. 453-454

  • (en) K.O. Kimberly et H.M. Robertson, Ancient DNA from amber fossil bees?, vol. 14, Mol Biol Evol, 1997, p. 1075-1077

  • (es) M.J.S. Rudwick, El significado de los fósiles, Hermann Blume, 1987

  • (en) K.S. Thomson, Living Fossil : The Story of the Coelacanth, Hutchinson Radius, 1991, p. 252

  • (en) K.R. Walker et R.K. Bambach, The significance of fossil assemblages from fine-grained sediments: time-averaged communities, vol. 3, Geological Society of America Abstracts with Programs, 1971, p. 783-784

  • (es) D.G.A. Whitten et J.R.V. Brooks, Diccionario de Geología, Madrid, Alianza Editorial, 1986, 300 p.


  • (en) H.B. Whittington, The Burgess Shale, New Haven, Yale University Press, 1985, . . : .

  • (en) E. Willerslev et al., Diversity of Holocene life forms in fossil glacier ice, vol. 96, Proceedings of National Academy of Science, USA, 1999, p. 8017-8021



Articles connexes |



  • Taphonomie

  • Microfossile

  • Fossile stratigraphique

  • Fossile vivant

  • Liste de fossiles par pays



Liens externes |



  • Notices d'autoritéVoir et modifier les données sur Wikidata : Gemeinsame Normdatei • Bibliothèque nationale de la Diète


  • Portail de la Préhistoire Portail de la Préhistoire
  • Portail de la paléontologie Portail de la paléontologie
  • Portail de l’évolution Portail de l’évolution
  • Portail des sciences de la Terre et de l’Univers Portail des sciences de la Terre et de l’Univers
  • Portail de la géologie Portail de la géologie



Popular posts from this blog

Berounka

Fiat S.p.A.

Type 'String' is not a subtype of type 'int' of 'index'