Converting $tanh^{-1}{x}$ to an expression involving the natural logarithm
up vote
2
down vote
favorite
I know how to convert $sinh^{-1}{x}$ and $cosh^{-1}{x}$ to $ln{|x+sqrt{x^2 pm 1}|}$, but for some reason I am struggling to do the same for the following statement:
$$tanh^{-1}{frac{x}{2}}$$
Can someone please show me how to convert it to a $ln$ form? thanks!
calculus hyperbolic-geometry
add a comment |
up vote
2
down vote
favorite
I know how to convert $sinh^{-1}{x}$ and $cosh^{-1}{x}$ to $ln{|x+sqrt{x^2 pm 1}|}$, but for some reason I am struggling to do the same for the following statement:
$$tanh^{-1}{frac{x}{2}}$$
Can someone please show me how to convert it to a $ln$ form? thanks!
calculus hyperbolic-geometry
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
I know how to convert $sinh^{-1}{x}$ and $cosh^{-1}{x}$ to $ln{|x+sqrt{x^2 pm 1}|}$, but for some reason I am struggling to do the same for the following statement:
$$tanh^{-1}{frac{x}{2}}$$
Can someone please show me how to convert it to a $ln$ form? thanks!
calculus hyperbolic-geometry
I know how to convert $sinh^{-1}{x}$ and $cosh^{-1}{x}$ to $ln{|x+sqrt{x^2 pm 1}|}$, but for some reason I am struggling to do the same for the following statement:
$$tanh^{-1}{frac{x}{2}}$$
Can someone please show me how to convert it to a $ln$ form? thanks!
calculus hyperbolic-geometry
calculus hyperbolic-geometry
edited Jan 15 '12 at 14:19
user38268
asked Jan 15 '12 at 12:36
yotamoo
1,12871836
1,12871836
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
up vote
1
down vote
accepted
Set $ y = tanh^{-1} t $ and take $tanh$ to take both sides so we have $$ tanh y = t .$$
Now convert the $tanh$ term into it's definition in terms of exponentials: $$ t = frac{ e^{y} - e^{-y} }{e^y + e^{-y} } = frac{ e^{2y} -1 }{e^{2y} +1 }.$$
Remember we want to solve for $y.$ Firstly solve for $u= e^{2y} $ first. Rearranging $ t= frac{u-1}{u+1} $ is simple, and hopefully you can do the rest.
add a comment |
up vote
0
down vote
$$tanh x=frac{e^{2x}-1}{e^{2x}+1} Rightarrow tanh frac{x}{2}=frac{e^{x}-1}{e^{x}+1} $$ In order to find $artanhfrac{x}{2}$ we have to solve following equation :
$$frac{x}{2}= frac {e^{2artanh frac{x}{2}}-1}{e^{2artanh frac{x}{2}}+1} Rightarrow x cdot e^{2artanh frac{x}{2}}+x=2e^{2artanh frac{x}{2}}-2 Rightarrow$$
$$x+2=(2-x) cdot e^{2artanh frac{x}{2}} Rightarrow e^{2artanh frac{x}{2}}=frac{2+x}{2-x} Rightarrow artanh frac{x}{2} =frac{1}{2} ln left(frac{2+x}{2-x}right) ; |x| < 2$$
add a comment |
up vote
0
down vote
Why is people not answering?
Look, it's quite intuitive so I'll just show you the step by step:
$y=tanh^{-1}x$
$tanh y=x$
$frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x$
$e^{y}-e^{-y}=xe^{y}+xe^{-y}$
$e^{2y}-1=xe^{2y}+x$
$e^{2y}(1-x)=1+x$
$e^{2y}=frac{1+x}{1-x}$
$y=frac{1}{2}ln(frac{1+x}{1-x})$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
1
down vote
accepted
Set $ y = tanh^{-1} t $ and take $tanh$ to take both sides so we have $$ tanh y = t .$$
Now convert the $tanh$ term into it's definition in terms of exponentials: $$ t = frac{ e^{y} - e^{-y} }{e^y + e^{-y} } = frac{ e^{2y} -1 }{e^{2y} +1 }.$$
Remember we want to solve for $y.$ Firstly solve for $u= e^{2y} $ first. Rearranging $ t= frac{u-1}{u+1} $ is simple, and hopefully you can do the rest.
add a comment |
up vote
1
down vote
accepted
Set $ y = tanh^{-1} t $ and take $tanh$ to take both sides so we have $$ tanh y = t .$$
Now convert the $tanh$ term into it's definition in terms of exponentials: $$ t = frac{ e^{y} - e^{-y} }{e^y + e^{-y} } = frac{ e^{2y} -1 }{e^{2y} +1 }.$$
Remember we want to solve for $y.$ Firstly solve for $u= e^{2y} $ first. Rearranging $ t= frac{u-1}{u+1} $ is simple, and hopefully you can do the rest.
add a comment |
up vote
1
down vote
accepted
up vote
1
down vote
accepted
Set $ y = tanh^{-1} t $ and take $tanh$ to take both sides so we have $$ tanh y = t .$$
Now convert the $tanh$ term into it's definition in terms of exponentials: $$ t = frac{ e^{y} - e^{-y} }{e^y + e^{-y} } = frac{ e^{2y} -1 }{e^{2y} +1 }.$$
Remember we want to solve for $y.$ Firstly solve for $u= e^{2y} $ first. Rearranging $ t= frac{u-1}{u+1} $ is simple, and hopefully you can do the rest.
Set $ y = tanh^{-1} t $ and take $tanh$ to take both sides so we have $$ tanh y = t .$$
Now convert the $tanh$ term into it's definition in terms of exponentials: $$ t = frac{ e^{y} - e^{-y} }{e^y + e^{-y} } = frac{ e^{2y} -1 }{e^{2y} +1 }.$$
Remember we want to solve for $y.$ Firstly solve for $u= e^{2y} $ first. Rearranging $ t= frac{u-1}{u+1} $ is simple, and hopefully you can do the rest.
answered Jan 15 '12 at 12:46
Ragib Zaman
28.3k34889
28.3k34889
add a comment |
add a comment |
up vote
0
down vote
$$tanh x=frac{e^{2x}-1}{e^{2x}+1} Rightarrow tanh frac{x}{2}=frac{e^{x}-1}{e^{x}+1} $$ In order to find $artanhfrac{x}{2}$ we have to solve following equation :
$$frac{x}{2}= frac {e^{2artanh frac{x}{2}}-1}{e^{2artanh frac{x}{2}}+1} Rightarrow x cdot e^{2artanh frac{x}{2}}+x=2e^{2artanh frac{x}{2}}-2 Rightarrow$$
$$x+2=(2-x) cdot e^{2artanh frac{x}{2}} Rightarrow e^{2artanh frac{x}{2}}=frac{2+x}{2-x} Rightarrow artanh frac{x}{2} =frac{1}{2} ln left(frac{2+x}{2-x}right) ; |x| < 2$$
add a comment |
up vote
0
down vote
$$tanh x=frac{e^{2x}-1}{e^{2x}+1} Rightarrow tanh frac{x}{2}=frac{e^{x}-1}{e^{x}+1} $$ In order to find $artanhfrac{x}{2}$ we have to solve following equation :
$$frac{x}{2}= frac {e^{2artanh frac{x}{2}}-1}{e^{2artanh frac{x}{2}}+1} Rightarrow x cdot e^{2artanh frac{x}{2}}+x=2e^{2artanh frac{x}{2}}-2 Rightarrow$$
$$x+2=(2-x) cdot e^{2artanh frac{x}{2}} Rightarrow e^{2artanh frac{x}{2}}=frac{2+x}{2-x} Rightarrow artanh frac{x}{2} =frac{1}{2} ln left(frac{2+x}{2-x}right) ; |x| < 2$$
add a comment |
up vote
0
down vote
up vote
0
down vote
$$tanh x=frac{e^{2x}-1}{e^{2x}+1} Rightarrow tanh frac{x}{2}=frac{e^{x}-1}{e^{x}+1} $$ In order to find $artanhfrac{x}{2}$ we have to solve following equation :
$$frac{x}{2}= frac {e^{2artanh frac{x}{2}}-1}{e^{2artanh frac{x}{2}}+1} Rightarrow x cdot e^{2artanh frac{x}{2}}+x=2e^{2artanh frac{x}{2}}-2 Rightarrow$$
$$x+2=(2-x) cdot e^{2artanh frac{x}{2}} Rightarrow e^{2artanh frac{x}{2}}=frac{2+x}{2-x} Rightarrow artanh frac{x}{2} =frac{1}{2} ln left(frac{2+x}{2-x}right) ; |x| < 2$$
$$tanh x=frac{e^{2x}-1}{e^{2x}+1} Rightarrow tanh frac{x}{2}=frac{e^{x}-1}{e^{x}+1} $$ In order to find $artanhfrac{x}{2}$ we have to solve following equation :
$$frac{x}{2}= frac {e^{2artanh frac{x}{2}}-1}{e^{2artanh frac{x}{2}}+1} Rightarrow x cdot e^{2artanh frac{x}{2}}+x=2e^{2artanh frac{x}{2}}-2 Rightarrow$$
$$x+2=(2-x) cdot e^{2artanh frac{x}{2}} Rightarrow e^{2artanh frac{x}{2}}=frac{2+x}{2-x} Rightarrow artanh frac{x}{2} =frac{1}{2} ln left(frac{2+x}{2-x}right) ; |x| < 2$$
answered Jan 15 '12 at 13:25
Peđa Terzić
7,88022570
7,88022570
add a comment |
add a comment |
up vote
0
down vote
Why is people not answering?
Look, it's quite intuitive so I'll just show you the step by step:
$y=tanh^{-1}x$
$tanh y=x$
$frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x$
$e^{y}-e^{-y}=xe^{y}+xe^{-y}$
$e^{2y}-1=xe^{2y}+x$
$e^{2y}(1-x)=1+x$
$e^{2y}=frac{1+x}{1-x}$
$y=frac{1}{2}ln(frac{1+x}{1-x})$
add a comment |
up vote
0
down vote
Why is people not answering?
Look, it's quite intuitive so I'll just show you the step by step:
$y=tanh^{-1}x$
$tanh y=x$
$frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x$
$e^{y}-e^{-y}=xe^{y}+xe^{-y}$
$e^{2y}-1=xe^{2y}+x$
$e^{2y}(1-x)=1+x$
$e^{2y}=frac{1+x}{1-x}$
$y=frac{1}{2}ln(frac{1+x}{1-x})$
add a comment |
up vote
0
down vote
up vote
0
down vote
Why is people not answering?
Look, it's quite intuitive so I'll just show you the step by step:
$y=tanh^{-1}x$
$tanh y=x$
$frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x$
$e^{y}-e^{-y}=xe^{y}+xe^{-y}$
$e^{2y}-1=xe^{2y}+x$
$e^{2y}(1-x)=1+x$
$e^{2y}=frac{1+x}{1-x}$
$y=frac{1}{2}ln(frac{1+x}{1-x})$
Why is people not answering?
Look, it's quite intuitive so I'll just show you the step by step:
$y=tanh^{-1}x$
$tanh y=x$
$frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}=x$
$e^{y}-e^{-y}=xe^{y}+xe^{-y}$
$e^{2y}-1=xe^{2y}+x$
$e^{2y}(1-x)=1+x$
$e^{2y}=frac{1+x}{1-x}$
$y=frac{1}{2}ln(frac{1+x}{1-x})$
edited Nov 22 at 14:28
Community♦
1
1
answered Apr 30 '17 at 5:49
Daniel
1
1
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f99254%2fconverting-tanh-1x-to-an-expression-involving-the-natural-logarithm%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown