Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $











up vote
17
down vote

favorite
13












Evaluate




$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$




Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is




begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.






I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$





I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?










share|cite|improve this question
























  • I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
    – Takahiro Waki
    Jan 7 '17 at 10:44










  • Wolfy agrees with your $int t^2...$ expression.
    – marty cohen
    Jan 9 '17 at 5:35










  • When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
    – B. Goddard
    Jan 9 '17 at 12:41










  • @B. Goddard sorry about that ,i won't do that again..
    – Renascence_5.
    Jan 9 '17 at 12:44

















up vote
17
down vote

favorite
13












Evaluate




$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$




Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is




begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.






I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$





I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?










share|cite|improve this question
























  • I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
    – Takahiro Waki
    Jan 7 '17 at 10:44










  • Wolfy agrees with your $int t^2...$ expression.
    – marty cohen
    Jan 9 '17 at 5:35










  • When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
    – B. Goddard
    Jan 9 '17 at 12:41










  • @B. Goddard sorry about that ,i won't do that again..
    – Renascence_5.
    Jan 9 '17 at 12:44















up vote
17
down vote

favorite
13









up vote
17
down vote

favorite
13






13





Evaluate




$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$




Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is




begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.






I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$





I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?










share|cite|improve this question















Evaluate




$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$




Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is




begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.






I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$





I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?







calculus integration analysis polylogarithm






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Jan 9 '17 at 10:22

























asked Jan 7 '17 at 4:26









Renascence_5.

3,66612063




3,66612063












  • I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
    – Takahiro Waki
    Jan 7 '17 at 10:44










  • Wolfy agrees with your $int t^2...$ expression.
    – marty cohen
    Jan 9 '17 at 5:35










  • When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
    – B. Goddard
    Jan 9 '17 at 12:41










  • @B. Goddard sorry about that ,i won't do that again..
    – Renascence_5.
    Jan 9 '17 at 12:44




















  • I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
    – Takahiro Waki
    Jan 7 '17 at 10:44










  • Wolfy agrees with your $int t^2...$ expression.
    – marty cohen
    Jan 9 '17 at 5:35










  • When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
    – B. Goddard
    Jan 9 '17 at 12:41










  • @B. Goddard sorry about that ,i won't do that again..
    – Renascence_5.
    Jan 9 '17 at 12:44


















I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44




I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44












Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35




Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35












When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41




When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41












@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44






@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44












3 Answers
3






active

oldest

votes

















up vote
4
down vote



accepted
+50










First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :



$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



and



$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



which are convergent for the integer values $enspace mgeq 2$ .



For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .



Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.



Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.



Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:



$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$



$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $



$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$



using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .



The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .



Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$



we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .



For $(n;k):=(3;3)$ follows



$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$



$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $



$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $





Note:



For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$



with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .



And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .






share|cite|improve this answer























  • @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
    – user90369
    Jan 12 '17 at 8:54












  • What is $zeta_n$ ?
    – Zaid Alyafeai
    Jan 12 '17 at 10:39










  • @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
    – user90369
    Jan 12 '17 at 10:49










  • What are they called ? It seems like related to Euler sums also what is the general formula ?
    – Zaid Alyafeai
    Jan 12 '17 at 11:01










  • The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
    – Zaid Alyafeai
    Jan 12 '17 at 11:07


















up vote
1
down vote













I think you can get from the paper( Jonathan M. Borwein and

and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$



where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$






share|cite|improve this answer




























    up vote
    1
    down vote













    I think you can apply the method only partially for the integral



    begin{align}
    int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
    &=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
    end{align}



    Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.



    Note that the approach you suggested is driven by the fact that if



    $$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$



    Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.



    $$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$






    share|cite|improve this answer





















      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "69"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














       

      draft saved


      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2087035%2fevaluate-int-0-pi-theta-3-log3-left-2-sin-frac-theta-2-righ%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      3 Answers
      3






      active

      oldest

      votes








      3 Answers
      3






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      4
      down vote



      accepted
      +50










      First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :



      $$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      and



      $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      which are convergent for the integer values $enspace mgeq 2$ .



      For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .



      Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.



      Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.



      Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:



      $ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$



      $displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $



      $displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$



      using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .



      The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .



      Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$



      we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .



      For $(n;k):=(3;3)$ follows



      $displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$



      $hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $



      $hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $





      Note:



      For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$



      with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .



      And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .






      share|cite|improve this answer























      • @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
        – user90369
        Jan 12 '17 at 8:54












      • What is $zeta_n$ ?
        – Zaid Alyafeai
        Jan 12 '17 at 10:39










      • @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
        – user90369
        Jan 12 '17 at 10:49










      • What are they called ? It seems like related to Euler sums also what is the general formula ?
        – Zaid Alyafeai
        Jan 12 '17 at 11:01










      • The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
        – Zaid Alyafeai
        Jan 12 '17 at 11:07















      up vote
      4
      down vote



      accepted
      +50










      First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :



      $$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      and



      $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      which are convergent for the integer values $enspace mgeq 2$ .



      For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .



      Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.



      Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.



      Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:



      $ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$



      $displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $



      $displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$



      using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .



      The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .



      Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$



      we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .



      For $(n;k):=(3;3)$ follows



      $displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$



      $hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $



      $hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $





      Note:



      For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$



      with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .



      And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .






      share|cite|improve this answer























      • @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
        – user90369
        Jan 12 '17 at 8:54












      • What is $zeta_n$ ?
        – Zaid Alyafeai
        Jan 12 '17 at 10:39










      • @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
        – user90369
        Jan 12 '17 at 10:49










      • What are they called ? It seems like related to Euler sums also what is the general formula ?
        – Zaid Alyafeai
        Jan 12 '17 at 11:01










      • The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
        – Zaid Alyafeai
        Jan 12 '17 at 11:07













      up vote
      4
      down vote



      accepted
      +50







      up vote
      4
      down vote



      accepted
      +50




      +50




      First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :



      $$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      and



      $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      which are convergent for the integer values $enspace mgeq 2$ .



      For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .



      Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.



      Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.



      Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:



      $ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$



      $displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $



      $displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$



      using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .



      The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .



      Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$



      we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .



      For $(n;k):=(3;3)$ follows



      $displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$



      $hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $



      $hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $





      Note:



      For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$



      with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .



      And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .






      share|cite|improve this answer














      First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :



      $$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      and



      $$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$



      which are convergent for the integer values $enspace mgeq 2$ .



      For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .



      Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.



      Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.



      Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:



      $ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$



      $displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $



      $displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$



      using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .



      The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .



      Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$



      we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .



      For $(n;k):=(3;3)$ follows



      $displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$



      $hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $



      $hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $





      Note:



      For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$



      with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .



      And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .







      share|cite|improve this answer














      share|cite|improve this answer



      share|cite|improve this answer








      edited Nov 22 at 15:13

























      answered Jan 11 '17 at 17:32









      user90369

      8,148925




      8,148925












      • @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
        – user90369
        Jan 12 '17 at 8:54












      • What is $zeta_n$ ?
        – Zaid Alyafeai
        Jan 12 '17 at 10:39










      • @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
        – user90369
        Jan 12 '17 at 10:49










      • What are they called ? It seems like related to Euler sums also what is the general formula ?
        – Zaid Alyafeai
        Jan 12 '17 at 11:01










      • The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
        – Zaid Alyafeai
        Jan 12 '17 at 11:07


















      • @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
        – user90369
        Jan 12 '17 at 8:54












      • What is $zeta_n$ ?
        – Zaid Alyafeai
        Jan 12 '17 at 10:39










      • @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
        – user90369
        Jan 12 '17 at 10:49










      • What are they called ? It seems like related to Euler sums also what is the general formula ?
        – Zaid Alyafeai
        Jan 12 '17 at 11:01










      • The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
        – Zaid Alyafeai
        Jan 12 '17 at 11:07
















      @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
      – user90369
      Jan 12 '17 at 8:54






      @Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
      – user90369
      Jan 12 '17 at 8:54














      What is $zeta_n$ ?
      – Zaid Alyafeai
      Jan 12 '17 at 10:39




      What is $zeta_n$ ?
      – Zaid Alyafeai
      Jan 12 '17 at 10:39












      @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
      – user90369
      Jan 12 '17 at 10:49




      @Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
      – user90369
      Jan 12 '17 at 10:49












      What are they called ? It seems like related to Euler sums also what is the general formula ?
      – Zaid Alyafeai
      Jan 12 '17 at 11:01




      What are they called ? It seems like related to Euler sums also what is the general formula ?
      – Zaid Alyafeai
      Jan 12 '17 at 11:01












      The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
      – Zaid Alyafeai
      Jan 12 '17 at 11:07




      The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
      – Zaid Alyafeai
      Jan 12 '17 at 11:07










      up vote
      1
      down vote













      I think you can get from the paper( Jonathan M. Borwein and

      and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
      $$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
      then
      $$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$



      where
      $$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$






      share|cite|improve this answer

























        up vote
        1
        down vote













        I think you can get from the paper( Jonathan M. Borwein and

        and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
        $$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
        then
        $$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$



        where
        $$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$






        share|cite|improve this answer























          up vote
          1
          down vote










          up vote
          1
          down vote









          I think you can get from the paper( Jonathan M. Borwein and

          and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
          $$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
          then
          $$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$



          where
          $$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$






          share|cite|improve this answer












          I think you can get from the paper( Jonathan M. Borwein and

          and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
          $$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
          then
          $$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$



          where
          $$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered Jan 11 '17 at 2:25









          math110

          32.4k455215




          32.4k455215






















              up vote
              1
              down vote













              I think you can apply the method only partially for the integral



              begin{align}
              int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
              &=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
              end{align}



              Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.



              Note that the approach you suggested is driven by the fact that if



              $$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$



              Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.



              $$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$






              share|cite|improve this answer

























                up vote
                1
                down vote













                I think you can apply the method only partially for the integral



                begin{align}
                int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
                &=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
                end{align}



                Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.



                Note that the approach you suggested is driven by the fact that if



                $$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$



                Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.



                $$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$






                share|cite|improve this answer























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  I think you can apply the method only partially for the integral



                  begin{align}
                  int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
                  &=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
                  end{align}



                  Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.



                  Note that the approach you suggested is driven by the fact that if



                  $$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$



                  Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.



                  $$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$






                  share|cite|improve this answer












                  I think you can apply the method only partially for the integral



                  begin{align}
                  int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
                  &=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
                  end{align}



                  Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.



                  Note that the approach you suggested is driven by the fact that if



                  $$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$



                  Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.



                  $$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$







                  share|cite|improve this answer












                  share|cite|improve this answer



                  share|cite|improve this answer










                  answered Jan 11 '17 at 14:14









                  Zaid Alyafeai

                  9,27622369




                  9,27622369






























                       

                      draft saved


                      draft discarded



















































                       


                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2087035%2fevaluate-int-0-pi-theta-3-log3-left-2-sin-frac-theta-2-righ%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Berounka

                      Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                      Sphinx de Gizeh