Evaluate $int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right )mathrm{d}theta $
up vote
17
down vote
favorite
Evaluate
$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$
Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is
begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.
I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$
I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?
calculus integration analysis polylogarithm
add a comment |
up vote
17
down vote
favorite
Evaluate
$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$
Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is
begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.
I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$
I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?
calculus integration analysis polylogarithm
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44
add a comment |
up vote
17
down vote
favorite
up vote
17
down vote
favorite
Evaluate
$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$
Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is
begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.
I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$
I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?
calculus integration analysis polylogarithm
Evaluate
$$int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta $$
Several days ago,I found this interesting integral from a paper about generalized log-sine integrals,but I can't remember the title of it. The answer of the integral is
begin{align*}
-mathrm{Ls}_{7}^{left ( 3 right )}left ( pi right )=&frac{9}{35}log^72+frac{4}{5}pi ^{2} log^52+9zeta left ( 3 right )log^42-frac{31}{30}pi ^{4}log^32\
&-left [ 72mathrm{Li}_5left ( frac{1}{2} right )-frac{9}{8}zeta left ( 5 right )-frac{51}{4}pi ^{2}zeta left ( 3 right ) right ]log^22\
&+left [ 72mathrm{Li}_{5,1}left ( frac{1}{2} right )-216mathrm{Li}_6left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_4left ( frac{1}{2} right ) right ]log2+72mathrm{Li}_{6,1}left ( frac{1}{2} right )\
&-216mathrm{Li}_7left ( frac{1}{2} right )+36pi ^{2}mathrm{Li}_5left ( frac{1}{2} right )-frac{1161}{32}zeta left ( 7 right )-frac{375}{32}pi ^{2}zeta left ( 5 right )+frac{1}{10}pi ^{4}zeta left ( 3 right )
end{align*}
where
$$mathrm{Ls}_n^{left ( k right )}left ( alpha right ):=-int_{0}^{alpha }theta ^{k}log^{n-1-k}left | 2sinfrac{theta }{2} right |mathrm{d}theta $$
is the generalized log-sine integral and
$$mathrm{Li}_{lambda ,1}left ( z right )=sum_{k=1}^{infty }frac{z^{k}}{k^{lambda }}sum_{j=1}^{k-1}frac{1}{j}$$
is the multiple polylogarithm.
I found a beautiful way to solve the integrals below
$$int_{0}^{frac{pi }{2}}t^{2n}log^{m}left ( 2cos t right )mathrm{d}t $$
Let's consider
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( xt right )left ( 2cos t right )^{y}mathrm{d}t$$
By using Gamma function,the integral become
$$mathcal{I}left ( x,y right )=frac{pi , Gamma left ( y+1 right )}{2Gamma left ( dfrac{x+y+2}{2} right )Gamma left ( dfrac{y-x+2}{2} right )}$$
Then we can get
$$mathcal{I}left ( x,y right )=frac{pi }{2}expleft ( sum_{k=2}^{infty }frac{left ( -1 right )^{k}}{kcdot 2^{k}}zeta left ( k right )left [ left ( 2y right )^{k}-left ( y-x right )^{k}-left ( x+y right )^{k} right ] right )$$
On the other hand,using taylor series
$$mathcal{I}left ( x,y right )=sum_{n=0}^{infty }frac{left ( -1 right )^{n}}{left ( 2n right )!}x^{2n}sum_{m=0}^{infty }frac{y^{m}}{m!}int_{0}^{frac{pi }{2}}t^{2n}log^mleft ( 2cos t right )mathrm{d}t$$
So,the comparison of coefficient shows the answer.For example
$$int_{0}^{frac{pi }{2}}t^{2}log^2left ( 2cos t right )mathrm{d}t=4cdot frac{pi }{2}left [ frac{12}{4cdot 16} zeta left ( 4 right )+frac{1}{2}frac{8}{2^{2}cdot 4^{2}}zeta left ( 2 right )^{2}right ]=frac{11}{1440}pi ^{5}$$
I wonder can we use the same way to prove the integral in the beginning,if not,is there another way to handle it?
calculus integration analysis polylogarithm
calculus integration analysis polylogarithm
edited Jan 9 '17 at 10:22
asked Jan 7 '17 at 4:26
Renascence_5.
3,66612063
3,66612063
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44
add a comment |
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44
add a comment |
3 Answers
3
active
oldest
votes
up vote
4
down vote
accepted
First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :
$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
and
$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
which are convergent for the integer values $enspace mgeq 2$ .
For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .
Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.
Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.
Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:
$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$
$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $
$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$
using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .
The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .
Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$
we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .
For $(n;k):=(3;3)$ follows
$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$
$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $
$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $
Note:
For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$
with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .
And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
|
show 5 more comments
up vote
1
down vote
I think you can get from the paper( Jonathan M. Borwein and
and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$
where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$
add a comment |
up vote
1
down vote
I think you can apply the method only partially for the integral
begin{align}
int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
&=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
end{align}
Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.
Note that the approach you suggested is driven by the fact that if
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$
Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.
$$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$
add a comment |
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
accepted
First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :
$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
and
$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
which are convergent for the integer values $enspace mgeq 2$ .
For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .
Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.
Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.
Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:
$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$
$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $
$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$
using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .
The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .
Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$
we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .
For $(n;k):=(3;3)$ follows
$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$
$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $
$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $
Note:
For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$
with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .
And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
|
show 5 more comments
up vote
4
down vote
accepted
First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :
$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
and
$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
which are convergent for the integer values $enspace mgeq 2$ .
For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .
Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.
Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.
Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:
$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$
$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $
$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$
using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .
The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .
Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$
we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .
For $(n;k):=(3;3)$ follows
$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$
$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $
$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $
Note:
For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$
with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .
And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
|
show 5 more comments
up vote
4
down vote
accepted
up vote
4
down vote
accepted
First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :
$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
and
$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
which are convergent for the integer values $enspace mgeq 2$ .
For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .
Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.
Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.
Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:
$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$
$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $
$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$
using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .
The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .
Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$
we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .
For $(n;k):=(3;3)$ follows
$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$
$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $
$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $
Note:
For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$
with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .
And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .
First I want to define with the Stirling numbers of the first kind $left[ begin{array}{c} n \ k end{array} right]$ a special generalization of the Riemann Zeta function :
$$zeta_n(m):=sumlimits_{k=1}^infty frac{1}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
and
$$eta_n(m):=sumlimits_{k=1}^infty frac{(-1)^{k-1}}{k^m}left(frac{n!}{(k-1)!}left[begin{array}{c} k \ n+1 end{array} right]right)$$
which are convergent for the integer values $enspace mgeq 2$ .
For $enspace n=0enspace$ we have $enspacezeta_0(m)=zeta(m)enspace$ and $enspaceeta_0(m)=eta(m)enspace$ .
Note: Obviously (because of the other results) these series can be expressed by sums of the polylogarithm function and modifications of that.
Please also see here, part Expansion by harmonic numbers, with $enspacedisplaystyle w(n,m):=frac{m!}{(n-1)!}left[ begin{array}{c} n \ {m+1} end{array} right]enspace$ and it's recursion formula.
Secondly, an extension of an integral as a series, $ninmathbb{N}_0$ and $zinmathbb{R}setminus {2mathbb{N}}$ and $nz>-1$:
$ displaystyle intlimits_0^pi x^n left(2sinfrac{x}{2}right)^z dx=i^{-z} intlimits_0^pi x^n e^{ifrac{xz}{2}}(1- e^{-ix})^z dx= e^{-ifrac{pi z}{2}} intlimits_0^pi x^n sumlimits_{k=0}^inftybinom{z}{k}(-1)^k e^{-ix(frac{z}{2}-k)} dx$
$displaystyle =intlimits_0^pi x^n e^{i(x-pi)frac{z}{2}} dx+ sumlimits_{v=0}^n frac{(-1)^vpi^{n-v} n!}{i^{v+1}(n-v)!} sumlimits_{k=1}^infty binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}} $
$displaystyle hspace{3.5cm} -i^{n-1}n!e^{-ifrac{pi z}{2}} sumlimits_{k=1}^infty binom{z}{k}frac{ (-1)^k}{(frac{z}{2}-k)^{n+1}}$
using the main branch of the logarithm and therefore $displaystyle i=e^{ifrac{pi}{2}}$ .
The Stirling numbers of the first kind are usually defined by $enspace displaystyle sumlimits_{k=0}^n left[ begin{array}{c} n \ k end{array} right] x^k := x(x+1)…(x+n-1) $ .
Because of $enspace displaystyle (sumlimits_{v=0}^infty x^v frac{d^k}{dz^k}binom{z}{v}) |_{z=0} =frac{d^k}{dz^k}(1+x)^z |_{z=0} =(ln(1+x))^k=k!sumlimits_{v=k}^infty (-1)^{v-k} left[begin{array}{c} v \ k end{array} right] frac{x^v}{v!}$
we get $enspace displaystyle binom{z}{k}|_{z=0}=0^kenspace$ , $enspace displaystyle frac{d}{dz} binom{z}{k} |_{z=0} = (-1)^{k-1} left[begin{array}{c} k \ 1 end{array} right] frac{1}{k!}= frac{(-1)^{k-1}}{k} enspace$ , $enspace displaystyle frac{d^2}{dz^2} binom{z}{k} |_{z=0} = (-1)^{k-2} left[begin{array}{c} k \ 2 end{array} right] frac{2!}{k!}= frac{(-1)^k 2}{k}sumlimits_{j=1}^{k-1}frac{1}{j} enspace$ and $enspace displaystyle frac{d^3}{dz^3} binom{z}{k} |_{z=0} = (-1)^{k-3} left[begin{array}{c} k \ 3 end{array} right] frac{3!}{k!}= frac{(-1)^{k-1} 3}{k}( (sumlimits_{j=1}^{k-1}frac{1}{j})^2 - sumlimits_{j=1}^{k-1}frac{1}{j^2} ) $ .
For $(n;k):=(3;3)$ follows
$displaystyle intlimits_0^pi x^3 left(lnleft(2sinfrac{x}{2} right)right)^3 dx =$
$hspace{2cm}displaystyle =frac{9pi^2}{2}left(zeta(5)+3eta(5)-4eta_1(4)+2eta_2(3)right) $
$hspace{2.5cm}displaystyle - 90left(zeta(7)+eta(7)right) +72left(zeta_1(6)+eta_1(6)right) - 18left(zeta_2(5)+eta_2(5)right) $
Note:
For the calculations I have used $enspacedisplaystyleintlimits_0^pi x^n e^{iax}dx = frac{(-1)^{n+1} n!}{(ia)^{n+1}}+e^{ipi a}sumlimits_{v=0}^nfrac{(-1)^v pi^{n-v}n!}{(ia)^{v+1}(n-v)!}$
with $enspacedisplaystyle a=-(frac{z}{2}-k)$ .
And it was necessary to calculate $enspacedisplaystylefrac{d^m}{dz^m} binom{z}{k}frac{1}{(frac{z}{2}-k)^{v+1}}|_{z=0}enspace$ and $enspacedisplaystylefrac{d^m}{dz^m} e^{-ifrac{pi z}{2}}binom{z}{k}frac{1}{(frac{z}{2}-k)^{n+1}}|_{z=0}enspace$ for $enspace min{0,1,2,3}$ .
edited Nov 22 at 15:13
answered Jan 11 '17 at 17:32
user90369
8,148925
8,148925
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
|
show 5 more comments
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
@Renascence_5. : Thanks! - But to get your formula we have to know something about the relation between $zeta_1$, $zeta_2$ and the polylogarithm (which is an additional problem).
– user90369
Jan 12 '17 at 8:54
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
What is $zeta_n$ ?
– Zaid Alyafeai
Jan 12 '17 at 10:39
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
@Zaid Alyafeai : That's defined in my answer above for $n=1$ and $n=2$ .
– user90369
Jan 12 '17 at 10:49
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
What are they called ? It seems like related to Euler sums also what is the general formula ?
– Zaid Alyafeai
Jan 12 '17 at 11:01
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
The relation to polylogarithms could be done using $$sum_{k=1}^infty H^{(p)}_k x^k = frac{mathrm{Li}_p(x)}{1-x}$$
– Zaid Alyafeai
Jan 12 '17 at 11:07
|
show 5 more comments
up vote
1
down vote
I think you can get from the paper( Jonathan M. Borwein and
and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$
where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$
add a comment |
up vote
1
down vote
I think you can get from the paper( Jonathan M. Borwein and
and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$
where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$
add a comment |
up vote
1
down vote
up vote
1
down vote
I think you can get from the paper( Jonathan M. Borwein and
and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$
where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$
I think you can get from the paper( Jonathan M. Borwein and
and Armin 2013) reslut Log-sine evaluations of Mahler measures Theorem 2.6 use this identity
$$-sum_{n,kge 0}Ls^{(k)}_{n+k+1}(pi)dfrac{lambda ^n}{n!}cdotdfrac{imu)^k}{k!}=isum_{nge 0}(-1)^nbinom{lambda}{n}dfrac{e^{ipifrac{lambda}{2}}-(-1)^ne^{ipimu}}{mu-dfrac{lambda}{2}+n}$$
then
$$int_{0}^{pi}theta^3log^3{left(2sin{dfrac{theta}{2}}right)}dtheta=-Ls_{7}^{(3)}=dfrac{d^3}{dmu^3}dfrac{d^3}{dlambda^3}sum_{nge 0}binom{n}{lambda}dfrac{(-1)^ne^{ipifrac{lambda}{2}}-e^{ipimu}}{mu-dfrac{lambda}{2}+n}=6pi^2lambda_{5}left(dfrac{1}{2}right)+36Li_{5,1,1}(-1)-pi^4zeta{(3)}-dfrac{759}{32}pi^2zeta{(5)}-dfrac{45}{32}zeta{(7)}$$
where
$$lambda_{n}(x)=(n-2)!sum_{k=0}^{n-2}dfrac{(-1)^k}{k!}Li_{n-k}(x)log^k|x|+dfrac{(-1)^n}{n}log^{n}|x|$$
answered Jan 11 '17 at 2:25
math110
32.4k455215
32.4k455215
add a comment |
add a comment |
up vote
1
down vote
I think you can apply the method only partially for the integral
begin{align}
int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
&=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
end{align}
Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.
Note that the approach you suggested is driven by the fact that if
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$
Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.
$$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$
add a comment |
up vote
1
down vote
I think you can apply the method only partially for the integral
begin{align}
int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
&=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
end{align}
Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.
Note that the approach you suggested is driven by the fact that if
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$
Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.
$$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$
add a comment |
up vote
1
down vote
up vote
1
down vote
I think you can apply the method only partially for the integral
begin{align}
int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
&=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
end{align}
Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.
Note that the approach you suggested is driven by the fact that if
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$
Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.
$$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$
I think you can apply the method only partially for the integral
begin{align}
int_{0}^{pi }theta ^{3}log^{3}left ( 2sinfrac{theta }{2} right ),mathrm{d}theta &= 2^4int_{0}^{pi /2 }left(frac{pi}{2}-theta right)^{3}log^{3}left ( 2costhetaright ),mathrm{d}theta\
&=2π^3int_{0}^{pi /2 }log^{3}left ( 2costhetaright ),mathrm{d}theta - 12 π^2int_{0}^{pi /2 } θlog^{3}left ( 2costhetaright ),mathrm{d}theta \&+ 24 πint_{0}^{pi /2 } θ^2log^{3}left ( 2costhetaright ),mathrm{d}theta - 16int_{0}^{pi /2 }θ^3log^{3}left ( 2costhetaright ),mathrm{d}theta
end{align}
Where for even powers of $theta$ you can use your formula. The other integrals are not trivial.
Note that the approach you suggested is driven by the fact that if
$$mathcal{I}left ( x,y right )=int_{0}^{frac{pi }{2}}cosleft ( x theta right )left ( 2cos theta right )^{y}mathrm{d}theta$$
Then we can solve the integral by differentiation with respect to both $x$ and $y$ but since we cannot get rid of $sin(x theta)$ we can apply the derivative even number of times.
$$frac{partial^{2n}partial ^m}{partial x^{2n}partial y^m} mathcal{I}left ( 0,0 right )=(-1)^nint_{0}^{frac{pi }{2}}theta^{2n} log^mleft ( 2cos theta right )mathrm{d}theta$$
answered Jan 11 '17 at 14:14
Zaid Alyafeai
9,27622369
9,27622369
add a comment |
add a comment |
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f2087035%2fevaluate-int-0-pi-theta-3-log3-left-2-sin-frac-theta-2-righ%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I recommend $int_{0}^{frac{pi}{2} }$, because interior of log become minus, and I just found only that it can be transformed $theta ^{3}log^{3}left ( 1+costheta right )mathrm{d}theta$.
– Takahiro Waki
Jan 7 '17 at 10:44
Wolfy agrees with your $int t^2...$ expression.
– marty cohen
Jan 9 '17 at 5:35
When you edit lots of questions with only minor changes like "d" to "mathrm{d}", it pushes all those old questions to the front page. People who come to the site looking to see what the new questions are, have to wade through all these old questions. 3 or 4 edits per day would be about right. And changing "d" to "mathrm{d}" is only a stylistic quirk; it doesn't improve the post.
– B. Goddard
Jan 9 '17 at 12:41
@B. Goddard sorry about that ,i won't do that again..
– Renascence_5.
Jan 9 '17 at 12:44