Evaluating an integral using Gegenbauer polynomials
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
add a comment |
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
I want to evaluate the following integral
$$int frac{(r-r'costheta')^2r'^2,dr'sintheta',dtheta',dphi'}{(r^2+r'^2-2rr'costheta')^{3/2}}$$
Working that a little bit i end up with this expression.
$$frac{2pi}{r^3} int_0^pi dtheta'frac{r^2 (1-frac{r'}{r}costheta')^2sintheta'}{(1+(frac{r'}{r})^2-2frac{r'}{r}costheta' )^{3/2}}int_0^R dr',r'^2$$
Using Gegenbauer polynomials to express the denominator i get
$ frac{2pi}{r} int_0^pi dtheta'(1-frac{r'}{r}costheta')^2sintheta'sum C_n(costheta')(frac{r'}{r})^n int_0^R dr'r'^2$ Doing some more calculations i get the following integrals.
$int_{-1}^1dx sum C_n(x)$ $int_{-1}^1dx sum C_n(x)x^2$ $int_{-1}^1dx sum C_n(x)x$
Which i dont know how to evaluate since I'm missing the weight function $(1-x^2)$ in the integrals
orthogonal-polynomials
orthogonal-polynomials
edited Nov 23 at 8:13
user10354138
6,472623
6,472623
asked Nov 22 at 15:08
Dimension Obscura
264
264
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3009257%2fevaluating-an-integral-using-gegenbauer-polynomials%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown