Finding $(x,y)$ closest to $N$ points
Given $N$ points where the coordinates of the $i$th point are $(x_i,y_i)$ find $(x,y)$ that minimizes the following sum.
$$sum_{i=1}^ Nmax(|x-x_i|,|y-y_i|)$$
I've done a similar problem minimize
$$sum_{i=1}^ N(|x-x_i|+|y-y_i|)$$
Which I found that the minimum is achieved when we take $x$ as the median of $x_1,x_2,ldots,x_N$ and $y$ as median of $y_1,y_2,ldots,y_N$.
I'm stuck on the first one because I don't know how to manipulate the $max$.
Edit 1:
After tinkering with the suggestion below I am still struggling to make progress here: The $frac{|x-x_i|+|y-y_i|}{2}$ can be minimized by taking the median but I am not sure how to minimize the other part: $frac{||x|-|x_i||-||y|-|y_i||}{2}$. I also don't know what to do if I could minimize the other part. How can I minimize the sum of these two?
optimization algorithms
add a comment |
Given $N$ points where the coordinates of the $i$th point are $(x_i,y_i)$ find $(x,y)$ that minimizes the following sum.
$$sum_{i=1}^ Nmax(|x-x_i|,|y-y_i|)$$
I've done a similar problem minimize
$$sum_{i=1}^ N(|x-x_i|+|y-y_i|)$$
Which I found that the minimum is achieved when we take $x$ as the median of $x_1,x_2,ldots,x_N$ and $y$ as median of $y_1,y_2,ldots,y_N$.
I'm stuck on the first one because I don't know how to manipulate the $max$.
Edit 1:
After tinkering with the suggestion below I am still struggling to make progress here: The $frac{|x-x_i|+|y-y_i|}{2}$ can be minimized by taking the median but I am not sure how to minimize the other part: $frac{||x|-|x_i||-||y|-|y_i||}{2}$. I also don't know what to do if I could minimize the other part. How can I minimize the sum of these two?
optimization algorithms
1
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday
add a comment |
Given $N$ points where the coordinates of the $i$th point are $(x_i,y_i)$ find $(x,y)$ that minimizes the following sum.
$$sum_{i=1}^ Nmax(|x-x_i|,|y-y_i|)$$
I've done a similar problem minimize
$$sum_{i=1}^ N(|x-x_i|+|y-y_i|)$$
Which I found that the minimum is achieved when we take $x$ as the median of $x_1,x_2,ldots,x_N$ and $y$ as median of $y_1,y_2,ldots,y_N$.
I'm stuck on the first one because I don't know how to manipulate the $max$.
Edit 1:
After tinkering with the suggestion below I am still struggling to make progress here: The $frac{|x-x_i|+|y-y_i|}{2}$ can be minimized by taking the median but I am not sure how to minimize the other part: $frac{||x|-|x_i||-||y|-|y_i||}{2}$. I also don't know what to do if I could minimize the other part. How can I minimize the sum of these two?
optimization algorithms
Given $N$ points where the coordinates of the $i$th point are $(x_i,y_i)$ find $(x,y)$ that minimizes the following sum.
$$sum_{i=1}^ Nmax(|x-x_i|,|y-y_i|)$$
I've done a similar problem minimize
$$sum_{i=1}^ N(|x-x_i|+|y-y_i|)$$
Which I found that the minimum is achieved when we take $x$ as the median of $x_1,x_2,ldots,x_N$ and $y$ as median of $y_1,y_2,ldots,y_N$.
I'm stuck on the first one because I don't know how to manipulate the $max$.
Edit 1:
After tinkering with the suggestion below I am still struggling to make progress here: The $frac{|x-x_i|+|y-y_i|}{2}$ can be minimized by taking the median but I am not sure how to minimize the other part: $frac{||x|-|x_i||-||y|-|y_i||}{2}$. I also don't know what to do if I could minimize the other part. How can I minimize the sum of these two?
optimization algorithms
optimization algorithms
edited yesterday
Mason
1,8581529
1,8581529
asked Nov 30 at 17:36
kingW3
11k72554
11k72554
1
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday
add a comment |
1
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday
1
1
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020383%2ffinding-x-y-closest-to-n-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020383%2ffinding-x-y-closest-to-n-points%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Not a complete answer which finds an expression for the $(x,y)$. However, here is an identity that I think will probably get you where you want to go. $max{{a,b}} = frac{a+b}{2} + frac{|a-b|}{2}$
– Mason
yesterday
I hope I didn't rob you of more complete answers by putting something more worthy as a comment as an answer. Anyway: I put a suggested edit and deleted my answer to get this back on the list of unanswered questions+ an edit will bump this back on to active questions.
– Mason
yesterday
@Mason Nice of you to do that, I don't think you robbed me of an answer. I feel that the question isn't interesting to people and your observation is helpful.
– kingW3
yesterday