Prove or disprove an inequality problem












0














Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.



Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$

To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$
using Bernoulli's Inequality:



Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?










share|cite|improve this question
























  • Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
    – Shubham Johri
    Nov 30 at 17:22










  • Sorry, I edited the original question @ShubhamJohri
    – cscisgqr
    Nov 30 at 17:26
















0














Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.



Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$

To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$
using Bernoulli's Inequality:



Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?










share|cite|improve this question
























  • Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
    – Shubham Johri
    Nov 30 at 17:22










  • Sorry, I edited the original question @ShubhamJohri
    – cscisgqr
    Nov 30 at 17:26














0












0








0







Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.



Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$

To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$
using Bernoulli's Inequality:



Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?










share|cite|improve this question















Let $ngeq 1$ be an integer and let $a_1,ldots,a_n$ be positive real numbers, all between $0$ and $1$.



Is it possible to prove or disprove:
$$
{(prod_{i=1}^{n}(1-a_i))}{(1+sum_{i=1}^{n}a_i)}<1
$$

To prove this, I was able to prove this to be true if all $a_1,ldots,a_n$ are the same which is$(1-a)^n(1+an)<1
$
using Bernoulli's Inequality:



Take $x$ root of the inequality:
$$(1-a)(1+an)^{1/a}leqslant (1-n)(1+n)=1-n^2<1$$
But what if $a_1,ldots,a_n$ do not have uniform values?







inequality a.m.-g.m.-inequality






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 30 at 18:05









user1551

71.2k566125




71.2k566125










asked Nov 30 at 17:14









cscisgqr

42




42












  • Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
    – Shubham Johri
    Nov 30 at 17:22










  • Sorry, I edited the original question @ShubhamJohri
    – cscisgqr
    Nov 30 at 17:26


















  • Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
    – Shubham Johri
    Nov 30 at 17:22










  • Sorry, I edited the original question @ShubhamJohri
    – cscisgqr
    Nov 30 at 17:26
















Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
– Shubham Johri
Nov 30 at 17:22




Wouldn't the case where all $a_i$ are equal translate to proving $(1-(1-a)^n)(1+na)<1$?
– Shubham Johri
Nov 30 at 17:22












Sorry, I edited the original question @ShubhamJohri
– cscisgqr
Nov 30 at 17:26




Sorry, I edited the original question @ShubhamJohri
– cscisgqr
Nov 30 at 17:26










2 Answers
2






active

oldest

votes


















2














By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$






share|cite|improve this answer























  • Sorry, I edited the original question
    – cscisgqr
    Nov 30 at 17:22










  • @cscisgqr I also fixed. See now.
    – Michael Rozenberg
    Nov 30 at 17:34










  • How did numerator become n+1? @Michael Rozenberg
    – cscisgqr
    Nov 30 at 17:47










  • @cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
    – Michael Rozenberg
    Nov 30 at 17:50








  • 1




    Nice application of AM-GM +1
    – Macavity
    Nov 30 at 17:56



















1














Note that $1+sum_1^na_i<prod_1^n(1+a_i)$



$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$






share|cite|improve this answer





















  • Beautiful solution! +1.
    – Michael Rozenberg
    Nov 30 at 18:02











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020348%2fprove-or-disprove-an-inequality-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









2














By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$






share|cite|improve this answer























  • Sorry, I edited the original question
    – cscisgqr
    Nov 30 at 17:22










  • @cscisgqr I also fixed. See now.
    – Michael Rozenberg
    Nov 30 at 17:34










  • How did numerator become n+1? @Michael Rozenberg
    – cscisgqr
    Nov 30 at 17:47










  • @cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
    – Michael Rozenberg
    Nov 30 at 17:50








  • 1




    Nice application of AM-GM +1
    – Macavity
    Nov 30 at 17:56
















2














By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$






share|cite|improve this answer























  • Sorry, I edited the original question
    – cscisgqr
    Nov 30 at 17:22










  • @cscisgqr I also fixed. See now.
    – Michael Rozenberg
    Nov 30 at 17:34










  • How did numerator become n+1? @Michael Rozenberg
    – cscisgqr
    Nov 30 at 17:47










  • @cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
    – Michael Rozenberg
    Nov 30 at 17:50








  • 1




    Nice application of AM-GM +1
    – Macavity
    Nov 30 at 17:56














2












2








2






By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$






share|cite|improve this answer














By AM-GM
$$prod_{i=1}^n(1-a_i)left(1+sum_{i=1}^na_iright)<left(frac{sumlimits_{i=1}^n(1-a_i)+1+sumlimits_{i=1}^na_i}{n+1}right)^{n+1}=left(frac{n+1}{n+1}right)^{n+1}=1.$$
The equality does not occur because $1-a_i<1+sumlimits_{i=1}^na_i.$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited Nov 30 at 17:57

























answered Nov 30 at 17:22









Michael Rozenberg

95.4k1588183




95.4k1588183












  • Sorry, I edited the original question
    – cscisgqr
    Nov 30 at 17:22










  • @cscisgqr I also fixed. See now.
    – Michael Rozenberg
    Nov 30 at 17:34










  • How did numerator become n+1? @Michael Rozenberg
    – cscisgqr
    Nov 30 at 17:47










  • @cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
    – Michael Rozenberg
    Nov 30 at 17:50








  • 1




    Nice application of AM-GM +1
    – Macavity
    Nov 30 at 17:56


















  • Sorry, I edited the original question
    – cscisgqr
    Nov 30 at 17:22










  • @cscisgqr I also fixed. See now.
    – Michael Rozenberg
    Nov 30 at 17:34










  • How did numerator become n+1? @Michael Rozenberg
    – cscisgqr
    Nov 30 at 17:47










  • @cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
    – Michael Rozenberg
    Nov 30 at 17:50








  • 1




    Nice application of AM-GM +1
    – Macavity
    Nov 30 at 17:56
















Sorry, I edited the original question
– cscisgqr
Nov 30 at 17:22




Sorry, I edited the original question
– cscisgqr
Nov 30 at 17:22












@cscisgqr I also fixed. See now.
– Michael Rozenberg
Nov 30 at 17:34




@cscisgqr I also fixed. See now.
– Michael Rozenberg
Nov 30 at 17:34












How did numerator become n+1? @Michael Rozenberg
– cscisgqr
Nov 30 at 17:47




How did numerator become n+1? @Michael Rozenberg
– cscisgqr
Nov 30 at 17:47












@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
– Michael Rozenberg
Nov 30 at 17:50






@cscisgqr It's $1+sumlimits_{i=1}^n1=1+n$ and $-sumlimits_{i=1}^na_i+sumlimits_{i=1}^na_i=0.$
– Michael Rozenberg
Nov 30 at 17:50






1




1




Nice application of AM-GM +1
– Macavity
Nov 30 at 17:56




Nice application of AM-GM +1
– Macavity
Nov 30 at 17:56











1














Note that $1+sum_1^na_i<prod_1^n(1+a_i)$



$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$






share|cite|improve this answer





















  • Beautiful solution! +1.
    – Michael Rozenberg
    Nov 30 at 18:02
















1














Note that $1+sum_1^na_i<prod_1^n(1+a_i)$



$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$






share|cite|improve this answer





















  • Beautiful solution! +1.
    – Michael Rozenberg
    Nov 30 at 18:02














1












1








1






Note that $1+sum_1^na_i<prod_1^n(1+a_i)$



$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$






share|cite|improve this answer












Note that $1+sum_1^na_i<prod_1^n(1+a_i)$



$implies (prod_1^n(1-a_i))(1+sum_1^na_i)<(prod_1^n(1-a_i))(prod_1^n(1+a_i))=prod_1^n(1-a_i^2)<1$







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered Nov 30 at 18:00









Shubham Johri

3,791716




3,791716












  • Beautiful solution! +1.
    – Michael Rozenberg
    Nov 30 at 18:02


















  • Beautiful solution! +1.
    – Michael Rozenberg
    Nov 30 at 18:02
















Beautiful solution! +1.
– Michael Rozenberg
Nov 30 at 18:02




Beautiful solution! +1.
– Michael Rozenberg
Nov 30 at 18:02


















draft saved

draft discarded




















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020348%2fprove-or-disprove-an-inequality-problem%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Sphinx de Gizeh

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...