Pandas DataFrame : selection of multiple elements in several columns
I have this Python Pandas DataFrame DF
:
DICT = { 'letter': ['A','B','C','A','B','C','A','B','C'],
'number': [1,1,1,2,2,2,3,3,3],
'word' : ['one','two','three','three','two','one','two','one','three']}
DF = pd.DataFrame(DICT)
Which looks like :
letter number word
0 A 1 one
1 B 1 two
2 C 1 three
3 A 2 three
4 B 2 two
5 C 2 one
6 A 3 two
7 B 3 one
8 C 3 three
And I want to extract the lines
letter number word
A 1 one
B 2 two
C 3 three
First I tired :
DF[(DF['letter'].isin(("A","B","C"))) &
DF['number'].isin((1,2,3)) &
DF['word'].isin(('one','two','three'))]
Of course it didn't work, and everything has been selected
Then I tested :
Bool = DF[['letter','number','word']].isin(("A",1,"one"))
DF[np.all(Bool,axis=1)]
Good, it works ! but only for one line ...
If we take the next step and give an iterable to .isin()
:
Bool = DF[['letter','number','word']].isin((("A",1,"one"),
("B",2,"two"),
("C",3,"three")))
Then it fails, the Boolean array is full of False ...
What I'm doing wrong ? Is there a more elegant way to do this selection based on several columns ?
(Anyway, I want to avoid a for
loop, because the real DataFrames I'm using are really big, so I'm looking for the fastest optimal way to do the job)
python pandas dataframe multiple-columns selection
add a comment |
I have this Python Pandas DataFrame DF
:
DICT = { 'letter': ['A','B','C','A','B','C','A','B','C'],
'number': [1,1,1,2,2,2,3,3,3],
'word' : ['one','two','three','three','two','one','two','one','three']}
DF = pd.DataFrame(DICT)
Which looks like :
letter number word
0 A 1 one
1 B 1 two
2 C 1 three
3 A 2 three
4 B 2 two
5 C 2 one
6 A 3 two
7 B 3 one
8 C 3 three
And I want to extract the lines
letter number word
A 1 one
B 2 two
C 3 three
First I tired :
DF[(DF['letter'].isin(("A","B","C"))) &
DF['number'].isin((1,2,3)) &
DF['word'].isin(('one','two','three'))]
Of course it didn't work, and everything has been selected
Then I tested :
Bool = DF[['letter','number','word']].isin(("A",1,"one"))
DF[np.all(Bool,axis=1)]
Good, it works ! but only for one line ...
If we take the next step and give an iterable to .isin()
:
Bool = DF[['letter','number','word']].isin((("A",1,"one"),
("B",2,"two"),
("C",3,"three")))
Then it fails, the Boolean array is full of False ...
What I'm doing wrong ? Is there a more elegant way to do this selection based on several columns ?
(Anyway, I want to avoid a for
loop, because the real DataFrames I'm using are really big, so I'm looking for the fastest optimal way to do the job)
python pandas dataframe multiple-columns selection
add a comment |
I have this Python Pandas DataFrame DF
:
DICT = { 'letter': ['A','B','C','A','B','C','A','B','C'],
'number': [1,1,1,2,2,2,3,3,3],
'word' : ['one','two','three','three','two','one','two','one','three']}
DF = pd.DataFrame(DICT)
Which looks like :
letter number word
0 A 1 one
1 B 1 two
2 C 1 three
3 A 2 three
4 B 2 two
5 C 2 one
6 A 3 two
7 B 3 one
8 C 3 three
And I want to extract the lines
letter number word
A 1 one
B 2 two
C 3 three
First I tired :
DF[(DF['letter'].isin(("A","B","C"))) &
DF['number'].isin((1,2,3)) &
DF['word'].isin(('one','two','three'))]
Of course it didn't work, and everything has been selected
Then I tested :
Bool = DF[['letter','number','word']].isin(("A",1,"one"))
DF[np.all(Bool,axis=1)]
Good, it works ! but only for one line ...
If we take the next step and give an iterable to .isin()
:
Bool = DF[['letter','number','word']].isin((("A",1,"one"),
("B",2,"two"),
("C",3,"three")))
Then it fails, the Boolean array is full of False ...
What I'm doing wrong ? Is there a more elegant way to do this selection based on several columns ?
(Anyway, I want to avoid a for
loop, because the real DataFrames I'm using are really big, so I'm looking for the fastest optimal way to do the job)
python pandas dataframe multiple-columns selection
I have this Python Pandas DataFrame DF
:
DICT = { 'letter': ['A','B','C','A','B','C','A','B','C'],
'number': [1,1,1,2,2,2,3,3,3],
'word' : ['one','two','three','three','two','one','two','one','three']}
DF = pd.DataFrame(DICT)
Which looks like :
letter number word
0 A 1 one
1 B 1 two
2 C 1 three
3 A 2 three
4 B 2 two
5 C 2 one
6 A 3 two
7 B 3 one
8 C 3 three
And I want to extract the lines
letter number word
A 1 one
B 2 two
C 3 three
First I tired :
DF[(DF['letter'].isin(("A","B","C"))) &
DF['number'].isin((1,2,3)) &
DF['word'].isin(('one','two','three'))]
Of course it didn't work, and everything has been selected
Then I tested :
Bool = DF[['letter','number','word']].isin(("A",1,"one"))
DF[np.all(Bool,axis=1)]
Good, it works ! but only for one line ...
If we take the next step and give an iterable to .isin()
:
Bool = DF[['letter','number','word']].isin((("A",1,"one"),
("B",2,"two"),
("C",3,"three")))
Then it fails, the Boolean array is full of False ...
What I'm doing wrong ? Is there a more elegant way to do this selection based on several columns ?
(Anyway, I want to avoid a for
loop, because the real DataFrames I'm using are really big, so I'm looking for the fastest optimal way to do the job)
python pandas dataframe multiple-columns selection
python pandas dataframe multiple-columns selection
asked Nov 22 at 13:27
Covich
817922
817922
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
Idea is create new DataFrame
with all triple values and then merge
with original DataFrame
:
L = [("A",1,"one"),
("B",2,"two"),
("C",3,"three")]
df1 = pd.DataFrame(L, columns=['letter','number','word'])
print (df1)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
df = DF.merge(df1)
print (df)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
Another idea is create list of tuples, convert to Series
and then compare by isin
:
s = pd.Series(list(map(tuple, DF[['letter','number','word']].values.tolist())),index=DF.index)
df1 = DF[s.isin(L)]
print (df1)
letter number word
0 A 1 one
4 B 2 two
8 C 3 three
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53432043%2fpandas-dataframe-selection-of-multiple-elements-in-several-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
Idea is create new DataFrame
with all triple values and then merge
with original DataFrame
:
L = [("A",1,"one"),
("B",2,"two"),
("C",3,"three")]
df1 = pd.DataFrame(L, columns=['letter','number','word'])
print (df1)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
df = DF.merge(df1)
print (df)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
Another idea is create list of tuples, convert to Series
and then compare by isin
:
s = pd.Series(list(map(tuple, DF[['letter','number','word']].values.tolist())),index=DF.index)
df1 = DF[s.isin(L)]
print (df1)
letter number word
0 A 1 one
4 B 2 two
8 C 3 three
add a comment |
Idea is create new DataFrame
with all triple values and then merge
with original DataFrame
:
L = [("A",1,"one"),
("B",2,"two"),
("C",3,"three")]
df1 = pd.DataFrame(L, columns=['letter','number','word'])
print (df1)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
df = DF.merge(df1)
print (df)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
Another idea is create list of tuples, convert to Series
and then compare by isin
:
s = pd.Series(list(map(tuple, DF[['letter','number','word']].values.tolist())),index=DF.index)
df1 = DF[s.isin(L)]
print (df1)
letter number word
0 A 1 one
4 B 2 two
8 C 3 three
add a comment |
Idea is create new DataFrame
with all triple values and then merge
with original DataFrame
:
L = [("A",1,"one"),
("B",2,"two"),
("C",3,"three")]
df1 = pd.DataFrame(L, columns=['letter','number','word'])
print (df1)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
df = DF.merge(df1)
print (df)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
Another idea is create list of tuples, convert to Series
and then compare by isin
:
s = pd.Series(list(map(tuple, DF[['letter','number','word']].values.tolist())),index=DF.index)
df1 = DF[s.isin(L)]
print (df1)
letter number word
0 A 1 one
4 B 2 two
8 C 3 three
Idea is create new DataFrame
with all triple values and then merge
with original DataFrame
:
L = [("A",1,"one"),
("B",2,"two"),
("C",3,"three")]
df1 = pd.DataFrame(L, columns=['letter','number','word'])
print (df1)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
df = DF.merge(df1)
print (df)
letter number word
0 A 1 one
1 B 2 two
2 C 3 three
Another idea is create list of tuples, convert to Series
and then compare by isin
:
s = pd.Series(list(map(tuple, DF[['letter','number','word']].values.tolist())),index=DF.index)
df1 = DF[s.isin(L)]
print (df1)
letter number word
0 A 1 one
4 B 2 two
8 C 3 three
answered Nov 22 at 13:29
jezrael
319k22258337
319k22258337
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53432043%2fpandas-dataframe-selection-of-multiple-elements-in-several-columns%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown