Limit addition and multiplication question












1















As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?




So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.



Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$



So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$



But the correct answer is $86$. Why??










share|cite|improve this question


















  • 2




    First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
    – Tito Eliatron
    Nov 30 at 17:04


















1















As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?




So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.



Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$



So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$



But the correct answer is $86$. Why??










share|cite|improve this question


















  • 2




    First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
    – Tito Eliatron
    Nov 30 at 17:04
















1












1








1








As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?




So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.



Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$



So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$



But the correct answer is $86$. Why??










share|cite|improve this question














As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?




So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.



Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$



So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$



But the correct answer is $86$. Why??







limits limits-without-lhopital






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked Nov 30 at 17:03









stackofhay42

1696




1696








  • 2




    First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
    – Tito Eliatron
    Nov 30 at 17:04
















  • 2




    First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
    – Tito Eliatron
    Nov 30 at 17:04










2




2




First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04






First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04












2 Answers
2






active

oldest

votes


















1















Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$




But $(f+g) cdot h ne f+g cdot h$ and they're asking:




the function f + g times h




Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!






share|cite|improve this answer





























    0














    We have that




    • $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$

    • $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$

    • $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$


    then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$



    $$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$



    $$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$



    that is



    $$lim_{xto 1} (f(x)+g(x)+h(x))=24$$






    share|cite|improve this answer





















    • the last operation is multiplication
      – user376343
      Dec 4 at 12:25











    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020332%2flimit-addition-and-multiplication-question%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    1















    Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$




    But $(f+g) cdot h ne f+g cdot h$ and they're asking:




    the function f + g times h




    Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!






    share|cite|improve this answer


























      1















      Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$




      But $(f+g) cdot h ne f+g cdot h$ and they're asking:




      the function f + g times h




      Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!






      share|cite|improve this answer
























        1












        1








        1







        Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$




        But $(f+g) cdot h ne f+g cdot h$ and they're asking:




        the function f + g times h




        Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!






        share|cite|improve this answer













        Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$




        But $(f+g) cdot h ne f+g cdot h$ and they're asking:




        the function f + g times h




        Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 30 at 17:08









        StackTD

        22k1947




        22k1947























            0














            We have that




            • $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$

            • $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$

            • $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$


            then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$



            $$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$



            $$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$



            that is



            $$lim_{xto 1} (f(x)+g(x)+h(x))=24$$






            share|cite|improve this answer





















            • the last operation is multiplication
              – user376343
              Dec 4 at 12:25
















            0














            We have that




            • $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$

            • $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$

            • $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$


            then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$



            $$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$



            $$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$



            that is



            $$lim_{xto 1} (f(x)+g(x)+h(x))=24$$






            share|cite|improve this answer





















            • the last operation is multiplication
              – user376343
              Dec 4 at 12:25














            0












            0








            0






            We have that




            • $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$

            • $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$

            • $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$


            then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$



            $$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$



            $$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$



            that is



            $$lim_{xto 1} (f(x)+g(x)+h(x))=24$$






            share|cite|improve this answer












            We have that




            • $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$

            • $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$

            • $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$


            then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$



            $$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$



            $$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$



            that is



            $$lim_{xto 1} (f(x)+g(x)+h(x))=24$$







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered Nov 30 at 20:54









            gimusi

            1




            1












            • the last operation is multiplication
              – user376343
              Dec 4 at 12:25


















            • the last operation is multiplication
              – user376343
              Dec 4 at 12:25
















            the last operation is multiplication
            – user376343
            Dec 4 at 12:25




            the last operation is multiplication
            – user376343
            Dec 4 at 12:25


















            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020332%2flimit-addition-and-multiplication-question%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh