Limit addition and multiplication question
As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?
So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$
But the correct answer is $86$. Why??
limits limits-without-lhopital
add a comment |
As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?
So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$
But the correct answer is $86$. Why??
limits limits-without-lhopital
2
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04
add a comment |
As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?
So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$
But the correct answer is $86$. Why??
limits limits-without-lhopital
As x approaches one, the limit of f of x is 6, the limit of g of x is
8, and the limit of h of x is 10. What is the limit as x approaches
one of the function f + g times h?
So WLOG I just set $f(x) = 6/x$, $g(x) = 8/x$ and $h(x) = 10/x$.
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
So $lim_{xto 1} 140/x^{2} = 140$. So my answer is $140$
But the correct answer is $86$. Why??
limits limits-without-lhopital
limits limits-without-lhopital
asked Nov 30 at 17:03
stackofhay42
1696
1696
2
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04
add a comment |
2
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04
2
2
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04
add a comment |
2 Answers
2
active
oldest
votes
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
But $(f+g) cdot h ne f+g cdot h$ and they're asking:
the function f + g times h
Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!
add a comment |
We have that
- $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$
- $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$
- $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$
then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$
$$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$
$$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$
that is
$$lim_{xto 1} (f(x)+g(x)+h(x))=24$$
the last operation is multiplication
– user376343
Dec 4 at 12:25
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020332%2flimit-addition-and-multiplication-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
But $(f+g) cdot h ne f+g cdot h$ and they're asking:
the function f + g times h
Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!
add a comment |
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
But $(f+g) cdot h ne f+g cdot h$ and they're asking:
the function f + g times h
Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!
add a comment |
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
But $(f+g) cdot h ne f+g cdot h$ and they're asking:
the function f + g times h
Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!
Then, $(f + g) * h$ = $frac{10}{x} cdot (frac{6}{x} + frac{8}{x}) = 140/x^{2}$
But $(f+g) cdot h ne f+g cdot h$ and they're asking:
the function f + g times h
Also: there's no need to invent functions satisfying the given limits; but if you want to, don't make it more difficult than necessary: the constant functions $6$, $8$ and $10$ do the trick!
answered Nov 30 at 17:08
StackTD
22k1947
22k1947
add a comment |
add a comment |
We have that
- $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$
- $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$
- $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$
then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$
$$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$
$$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$
that is
$$lim_{xto 1} (f(x)+g(x)+h(x))=24$$
the last operation is multiplication
– user376343
Dec 4 at 12:25
add a comment |
We have that
- $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$
- $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$
- $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$
then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$
$$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$
$$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$
that is
$$lim_{xto 1} (f(x)+g(x)+h(x))=24$$
the last operation is multiplication
– user376343
Dec 4 at 12:25
add a comment |
We have that
- $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$
- $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$
- $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$
then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$
$$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$
$$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$
that is
$$lim_{xto 1} (f(x)+g(x)+h(x))=24$$
We have that
- $lim_{xto 1} f(x)=6 iff forall epsilon>0quad exists delta_f>0quad forall xquad 0<|x-1|<delta_f quad |f(x)-6|<epsilon$
- $lim_{xto 1} g(x)=8iff forall epsilon>0quad exists delta_g>0quad forall xquad 0<|x-1|<delta_g quad |g(x)-8|<epsilon$
- $lim_{xto 1} h(x)=10iff forall epsilon>0quad exists delta_h>0quad forall xquad 0<|x-1|<delta_h quad |h(x)-10|<epsilon$
then $forall epsilon_1=3epsilon>0$ indicating by $delta=min{delta_f,delta_g,delta_h}$ we have that $forall xquad 0<|x-1|<delta$
$$|f(x)+g(x)+h(x)-24|=|(f(x)-6)+(g(x)-8)+(h(x)-10)|le $$
$$le|f(x)-6|+|g(x)-8|+|h(x)-10|<3epsilon=epsilon_1$$
that is
$$lim_{xto 1} (f(x)+g(x)+h(x))=24$$
answered Nov 30 at 20:54
gimusi
1
1
the last operation is multiplication
– user376343
Dec 4 at 12:25
add a comment |
the last operation is multiplication
– user376343
Dec 4 at 12:25
the last operation is multiplication
– user376343
Dec 4 at 12:25
the last operation is multiplication
– user376343
Dec 4 at 12:25
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3020332%2flimit-addition-and-multiplication-question%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
2
First multiply, tren, SUM. Is $f+gcdot h$. In your case, $6/x + 8/x *10/x = 6/x + 80/ x^2 = (6x+80)/x^2$
– Tito Eliatron
Nov 30 at 17:04