Finding a distribution function of random variable sum












1












$begingroup$


Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.



So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.



But how to use it and find a distribution function?










share|cite|improve this question









$endgroup$

















    1












    $begingroup$


    Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.



    So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.



    But how to use it and find a distribution function?










    share|cite|improve this question









    $endgroup$















      1












      1








      1





      $begingroup$


      Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.



      So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.



      But how to use it and find a distribution function?










      share|cite|improve this question









      $endgroup$




      Let $xi_1, xi_2, xi_3$ independent random variables in $(Omega, mathcal{F},mathbb{P}).$ Also, they are evenly distributed in $[0,1]$. I need to find a distribution function of sum $xi_1+ xi_2+ xi_3$.



      So, I know that $F_{xi}(x)=mathbb{P}(omega : xi(omega leq x)=mathbb{P}(xi leq x)=mathbb{P}(xi^{-1}(-infty;x])$. Also I know that $mathbb{P}(xi_1,xi_2,xi_3)=mathbb{P}(xi_1)* mathbb{P}(xi_1)* mathbb{P}(xi_1)$.



      But how to use it and find a distribution function?







      probability probability-theory probability-distributions random-variables






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked Dec 10 '18 at 6:50









      AtstovasAtstovas

      1109




      1109






















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          Convolution of two distributions.



          $t_{x_0} = 0$



          $t_{x_1} = 1$



          $t_{h_0} = 0$



          $t_{h_1} = 1$



          Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$



          $$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$



          $$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$



          THese translate to the following solution



          First convolve two uniform distributions



          $X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$



          $$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
          The above convolution reduces to



          $y(t) = 0, tlt 0$



          $y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,



          $y(t) = 0 , t gt 2$



          The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$



          $y(t) = 0, tlt 0$



          $y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,



          $y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,



          $y(t) = 0 , t gt 2$



          Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$



          For $0lt tlt 1$, the bounds are



          $t_{s_0} = 0$



          $t_{s_1} = 1$



          $t_{y_0} = 0$



          $t_{y_1} = 1$



          $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,



          For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are



          $t_{s_0} = 0$



          $t_{s_1} = 1$



          $t_{y_0} = 0$



          $t_{y_1} = 1$



          and for the interval $(1,2)$ the bounds are



          $t_{s_0} = 0$



          $t_{s_1} = 1$



          $t_{y_0} = 1$



          $t_{y_1} = 2$



          Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,



          For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are



          $t_{s_0} = 0$



          $t_{s_1} = 1$



          $t_{y_0} = 1$



          $t_{y_1} = 2$



          Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$



          and finally $W(t) = 0, tgt 3$



          Thus the $W(t)$ is defined by



          $W(t) = 0 , tlt 0$



          $W(t) = frac{t^2}{2}, 0lt t lt 1$



          $W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$



          $W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$



          $W(t) = 0 , tgt 3$






          share|cite|improve this answer











          $endgroup$





















            2












            $begingroup$

            One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$






            share|cite|improve this answer









            $endgroup$













            • $begingroup$
              How to integrate this?
              $endgroup$
              – Atstovas
              Dec 10 '18 at 9:00










            • $begingroup$
              I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
              $endgroup$
              – BlackMath
              Dec 10 '18 at 9:24












            • $begingroup$
              A similar questions is found here math.stackexchange.com/questions/2631501/…
              $endgroup$
              – BlackMath
              Dec 10 '18 at 9:32










            • $begingroup$
              can you show your solution when $z<1$?
              $endgroup$
              – Atstovas
              Dec 11 '18 at 17:40










            • $begingroup$
              It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
              $endgroup$
              – BlackMath
              Dec 11 '18 at 23:52













            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "69"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033555%2ffinding-a-distribution-function-of-random-variable-sum%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1












            $begingroup$

            Convolution of two distributions.



            $t_{x_0} = 0$



            $t_{x_1} = 1$



            $t_{h_0} = 0$



            $t_{h_1} = 1$



            Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$



            $$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$



            $$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$



            THese translate to the following solution



            First convolve two uniform distributions



            $X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$



            $$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
            The above convolution reduces to



            $y(t) = 0, tlt 0$



            $y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,



            $y(t) = 0 , t gt 2$



            The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$



            $y(t) = 0, tlt 0$



            $y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,



            $y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,



            $y(t) = 0 , t gt 2$



            Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$



            For $0lt tlt 1$, the bounds are



            $t_{s_0} = 0$



            $t_{s_1} = 1$



            $t_{y_0} = 0$



            $t_{y_1} = 1$



            $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,



            For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are



            $t_{s_0} = 0$



            $t_{s_1} = 1$



            $t_{y_0} = 0$



            $t_{y_1} = 1$



            and for the interval $(1,2)$ the bounds are



            $t_{s_0} = 0$



            $t_{s_1} = 1$



            $t_{y_0} = 1$



            $t_{y_1} = 2$



            Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,



            For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are



            $t_{s_0} = 0$



            $t_{s_1} = 1$



            $t_{y_0} = 1$



            $t_{y_1} = 2$



            Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$



            and finally $W(t) = 0, tgt 3$



            Thus the $W(t)$ is defined by



            $W(t) = 0 , tlt 0$



            $W(t) = frac{t^2}{2}, 0lt t lt 1$



            $W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$



            $W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$



            $W(t) = 0 , tgt 3$






            share|cite|improve this answer











            $endgroup$


















              1












              $begingroup$

              Convolution of two distributions.



              $t_{x_0} = 0$



              $t_{x_1} = 1$



              $t_{h_0} = 0$



              $t_{h_1} = 1$



              Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$



              $$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$



              $$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$



              THese translate to the following solution



              First convolve two uniform distributions



              $X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$



              $$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
              The above convolution reduces to



              $y(t) = 0, tlt 0$



              $y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,



              $y(t) = 0 , t gt 2$



              The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$



              $y(t) = 0, tlt 0$



              $y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,



              $y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,



              $y(t) = 0 , t gt 2$



              Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$



              For $0lt tlt 1$, the bounds are



              $t_{s_0} = 0$



              $t_{s_1} = 1$



              $t_{y_0} = 0$



              $t_{y_1} = 1$



              $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,



              For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are



              $t_{s_0} = 0$



              $t_{s_1} = 1$



              $t_{y_0} = 0$



              $t_{y_1} = 1$



              and for the interval $(1,2)$ the bounds are



              $t_{s_0} = 0$



              $t_{s_1} = 1$



              $t_{y_0} = 1$



              $t_{y_1} = 2$



              Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,



              For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are



              $t_{s_0} = 0$



              $t_{s_1} = 1$



              $t_{y_0} = 1$



              $t_{y_1} = 2$



              Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$



              and finally $W(t) = 0, tgt 3$



              Thus the $W(t)$ is defined by



              $W(t) = 0 , tlt 0$



              $W(t) = frac{t^2}{2}, 0lt t lt 1$



              $W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$



              $W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$



              $W(t) = 0 , tgt 3$






              share|cite|improve this answer











              $endgroup$
















                1












                1








                1





                $begingroup$

                Convolution of two distributions.



                $t_{x_0} = 0$



                $t_{x_1} = 1$



                $t_{h_0} = 0$



                $t_{h_1} = 1$



                Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$



                $$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$



                $$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$



                THese translate to the following solution



                First convolve two uniform distributions



                $X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$



                $$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
                The above convolution reduces to



                $y(t) = 0, tlt 0$



                $y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,



                $y(t) = 0 , t gt 2$



                The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$



                $y(t) = 0, tlt 0$



                $y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,



                $y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,



                $y(t) = 0 , t gt 2$



                Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$



                For $0lt tlt 1$, the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 0$



                $t_{y_1} = 1$



                $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,



                For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 0$



                $t_{y_1} = 1$



                and for the interval $(1,2)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 1$



                $t_{y_1} = 2$



                Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,



                For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 1$



                $t_{y_1} = 2$



                Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$



                and finally $W(t) = 0, tgt 3$



                Thus the $W(t)$ is defined by



                $W(t) = 0 , tlt 0$



                $W(t) = frac{t^2}{2}, 0lt t lt 1$



                $W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$



                $W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$



                $W(t) = 0 , tgt 3$






                share|cite|improve this answer











                $endgroup$



                Convolution of two distributions.



                $t_{x_0} = 0$



                $t_{x_1} = 1$



                $t_{h_0} = 0$



                $t_{h_1} = 1$



                Thus $$f_Y(t) = 0, t le t_{x_0}+t_{h_0} ,$$



                $$f_Y(t) = int_{max(t_{h_0}, t-t_{x_1})}^{min(t_{h_1}, t-t_{x_0})} f_X(tau)f_H(t-tau)dtau, text{ } t_{x_0}+t_{h_0} le t le t_{x_1}+t_{h_1},$$



                $$f_Y(t) = 0, t ge t_{x_1}+t_{h_1} ,$$



                THese translate to the following solution



                First convolve two uniform distributions



                $X(t) ~ U(0,1)$ and $H(t) ~ U(0,1)$



                $$Y(t) = x(t).h(t) = int_{-infty}^{infty} x(tau)h(t-tau)dtau$$
                The above convolution reduces to



                $y(t) = 0, tlt 0$



                $y(t) = int_{max(0,t-1)}^{min(1,t)} dtau , 0lt t lt 2$,



                $y(t) = 0 , t gt 2$



                The middle one will have to split into two intervals, namely $0lt t lt 1$ and $1lt t lt 2$



                $y(t) = 0, tlt 0$



                $y(t) = int_{0}^{t} dtau =t, 0lt tlt 1$,



                $y(t) = int_{t-1}^{1} dtau = 2-t, 1lt tlt 2$,



                $y(t) = 0 , t gt 2$



                Now $W(t) = Y(t). S(t)$ where $S(t) ~U(0,1)$



                For $0lt tlt 1$, the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 0$



                $t_{y_1} = 1$



                $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau = int_{0}^{t}tau dtau = frac{t^2}{2}, 0lt tlt 1$$,



                For $1lt tlt 2$, $S(t)$ convolves with $Y(t)$ on two intervals namely $(0,1)$ and $(1,2)$. For the interval $(0,1)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 0$



                $t_{y_1} = 1$



                and for the interval $(1,2)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 1$



                $t_{y_1} = 2$



                Thus $$W(t) = int_{max(0,t-1)}^{min(1,t)} tau dtau + int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau$$ $$ = int_{t-1}^{1}tau dtau + int_{1}^{t}(2-tau) dtau$$ $$ = -frac{1}{2}(2t^2-6t+3), 1lt tlt 2$$,



                For $2lt tlt 3$, $S(t)$ convolves with $Y(t)$ on $(1,2)$. For the interval $(1,2)$ the bounds are



                $t_{s_0} = 0$



                $t_{s_1} = 1$



                $t_{y_0} = 1$



                $t_{y_1} = 2$



                Thus $$W(t) = int_{max(1,t-1)}^{min(2,t)} (2-tau) dtau $$ $$ = int_{t-1}^{2} (2- tau) dtau$$ $$ = frac{(t-3)^2}{2}, 2lt t lt 3$$



                and finally $W(t) = 0, tgt 3$



                Thus the $W(t)$ is defined by



                $W(t) = 0 , tlt 0$



                $W(t) = frac{t^2}{2}, 0lt t lt 1$



                $W(t) = -t^2+3t-frac{3}{2}, 1lt t lt 2$



                $W(t) = frac{(t-3)^2}{2}, 2lt t lt 3$



                $W(t) = 0 , tgt 3$







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited Dec 11 '18 at 10:24

























                answered Dec 11 '18 at 5:04









                Satish RamanathanSatish Ramanathan

                9,66531323




                9,66531323























                    2












                    $begingroup$

                    One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      How to integrate this?
                      $endgroup$
                      – Atstovas
                      Dec 10 '18 at 9:00










                    • $begingroup$
                      I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:24












                    • $begingroup$
                      A similar questions is found here math.stackexchange.com/questions/2631501/…
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:32










                    • $begingroup$
                      can you show your solution when $z<1$?
                      $endgroup$
                      – Atstovas
                      Dec 11 '18 at 17:40










                    • $begingroup$
                      It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                      $endgroup$
                      – BlackMath
                      Dec 11 '18 at 23:52


















                    2












                    $begingroup$

                    One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$






                    share|cite|improve this answer









                    $endgroup$













                    • $begingroup$
                      How to integrate this?
                      $endgroup$
                      – Atstovas
                      Dec 10 '18 at 9:00










                    • $begingroup$
                      I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:24












                    • $begingroup$
                      A similar questions is found here math.stackexchange.com/questions/2631501/…
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:32










                    • $begingroup$
                      can you show your solution when $z<1$?
                      $endgroup$
                      – Atstovas
                      Dec 11 '18 at 17:40










                    • $begingroup$
                      It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                      $endgroup$
                      – BlackMath
                      Dec 11 '18 at 23:52
















                    2












                    2








                    2





                    $begingroup$

                    One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$






                    share|cite|improve this answer









                    $endgroup$



                    One way is (I used $Z$ instead of $xi$)$$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{min(z,,1)}int_{z_2=0}^{min(z-z_3,,1)}int_{z_1=0}^{min(z-z_2-z_3,,1)}dz_1,dz_2,dz_3$$







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered Dec 10 '18 at 7:10









                    BlackMathBlackMath

                    30518




                    30518












                    • $begingroup$
                      How to integrate this?
                      $endgroup$
                      – Atstovas
                      Dec 10 '18 at 9:00










                    • $begingroup$
                      I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:24












                    • $begingroup$
                      A similar questions is found here math.stackexchange.com/questions/2631501/…
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:32










                    • $begingroup$
                      can you show your solution when $z<1$?
                      $endgroup$
                      – Atstovas
                      Dec 11 '18 at 17:40










                    • $begingroup$
                      It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                      $endgroup$
                      – BlackMath
                      Dec 11 '18 at 23:52




















                    • $begingroup$
                      How to integrate this?
                      $endgroup$
                      – Atstovas
                      Dec 10 '18 at 9:00










                    • $begingroup$
                      I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:24












                    • $begingroup$
                      A similar questions is found here math.stackexchange.com/questions/2631501/…
                      $endgroup$
                      – BlackMath
                      Dec 10 '18 at 9:32










                    • $begingroup$
                      can you show your solution when $z<1$?
                      $endgroup$
                      – Atstovas
                      Dec 11 '18 at 17:40










                    • $begingroup$
                      It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                      $endgroup$
                      – BlackMath
                      Dec 11 '18 at 23:52


















                    $begingroup$
                    How to integrate this?
                    $endgroup$
                    – Atstovas
                    Dec 10 '18 at 9:00




                    $begingroup$
                    How to integrate this?
                    $endgroup$
                    – Atstovas
                    Dec 10 '18 at 9:00












                    $begingroup$
                    I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                    $endgroup$
                    – BlackMath
                    Dec 10 '18 at 9:24






                    $begingroup$
                    I guess you need to find the possible cases. The simplest one is when $z < 1$. In this case, the upper limits are $z, ,z-z_3,,z-z_2-z_3$. For $zgeq 1$ there are more cases.
                    $endgroup$
                    – BlackMath
                    Dec 10 '18 at 9:24














                    $begingroup$
                    A similar questions is found here math.stackexchange.com/questions/2631501/…
                    $endgroup$
                    – BlackMath
                    Dec 10 '18 at 9:32




                    $begingroup$
                    A similar questions is found here math.stackexchange.com/questions/2631501/…
                    $endgroup$
                    – BlackMath
                    Dec 10 '18 at 9:32












                    $begingroup$
                    can you show your solution when $z<1$?
                    $endgroup$
                    – Atstovas
                    Dec 11 '18 at 17:40




                    $begingroup$
                    can you show your solution when $z<1$?
                    $endgroup$
                    – Atstovas
                    Dec 11 '18 at 17:40












                    $begingroup$
                    It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                    $endgroup$
                    – BlackMath
                    Dec 11 '18 at 23:52






                    $begingroup$
                    It will be $$P[Z_1+Z_2+Z_3 leq z] = int_{z_3=0}^{z}int_{z_2=0}^{z-z_3}int_{z_1=0}^{z-z_2-z_3}dz_1,dz_2,dz_3$$ Can you solve this? I suppose it's straightforward. Start from the most inner integral.
                    $endgroup$
                    – BlackMath
                    Dec 11 '18 at 23:52




















                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3033555%2ffinding-a-distribution-function-of-random-variable-sum%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Berounka

                    Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

                    Sphinx de Gizeh