Help:For what $ alpha $ do the integrals exist?











up vote
2
down vote

favorite












Let
$ K_R (y) subset mathbb{R}^n $
be an n-dimensional Ball with radius $R>0$ and midpoint $y in mathbb{R}^n $



Far what $ alpha in mathbb{R} $ and $ n in mathbb{N}{0} $ do following integrals exist:



$ int_{K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n setminus K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n } |x-y|^{alpha}dx $



with what criteria can i solve this task?
I don't know how to begin.
Thanks for any help!!



Let's take
$ int_{K{_R(y)}} |x-y|^{alpha}dx $ ,$y=0, n=2 $



If I replace by polarcoordinates $ x= rsin phi $ :
$ int_0^{2 pi} int_0^R | r|^{alpha} r dr dphi $..is this the right way?










share|cite|improve this question
























  • Take $y=0$ and $n=2$ to start. You can use polar coordinates.
    – zhw.
    Nov 28 at 18:18















up vote
2
down vote

favorite












Let
$ K_R (y) subset mathbb{R}^n $
be an n-dimensional Ball with radius $R>0$ and midpoint $y in mathbb{R}^n $



Far what $ alpha in mathbb{R} $ and $ n in mathbb{N}{0} $ do following integrals exist:



$ int_{K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n setminus K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n } |x-y|^{alpha}dx $



with what criteria can i solve this task?
I don't know how to begin.
Thanks for any help!!



Let's take
$ int_{K{_R(y)}} |x-y|^{alpha}dx $ ,$y=0, n=2 $



If I replace by polarcoordinates $ x= rsin phi $ :
$ int_0^{2 pi} int_0^R | r|^{alpha} r dr dphi $..is this the right way?










share|cite|improve this question
























  • Take $y=0$ and $n=2$ to start. You can use polar coordinates.
    – zhw.
    Nov 28 at 18:18













up vote
2
down vote

favorite









up vote
2
down vote

favorite











Let
$ K_R (y) subset mathbb{R}^n $
be an n-dimensional Ball with radius $R>0$ and midpoint $y in mathbb{R}^n $



Far what $ alpha in mathbb{R} $ and $ n in mathbb{N}{0} $ do following integrals exist:



$ int_{K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n setminus K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n } |x-y|^{alpha}dx $



with what criteria can i solve this task?
I don't know how to begin.
Thanks for any help!!



Let's take
$ int_{K{_R(y)}} |x-y|^{alpha}dx $ ,$y=0, n=2 $



If I replace by polarcoordinates $ x= rsin phi $ :
$ int_0^{2 pi} int_0^R | r|^{alpha} r dr dphi $..is this the right way?










share|cite|improve this question















Let
$ K_R (y) subset mathbb{R}^n $
be an n-dimensional Ball with radius $R>0$ and midpoint $y in mathbb{R}^n $



Far what $ alpha in mathbb{R} $ and $ n in mathbb{N}{0} $ do following integrals exist:



$ int_{K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n setminus K{_R(y)}} |x-y|^{alpha}dx $



$ int_{ mathbb{R}^n } |x-y|^{alpha}dx $



with what criteria can i solve this task?
I don't know how to begin.
Thanks for any help!!



Let's take
$ int_{K{_R(y)}} |x-y|^{alpha}dx $ ,$y=0, n=2 $



If I replace by polarcoordinates $ x= rsin phi $ :
$ int_0^{2 pi} int_0^R | r|^{alpha} r dr dphi $..is this the right way?







real-analysis integration multivariable-calculus






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited Nov 28 at 21:44

























asked Nov 28 at 18:16









constant94

1365




1365












  • Take $y=0$ and $n=2$ to start. You can use polar coordinates.
    – zhw.
    Nov 28 at 18:18


















  • Take $y=0$ and $n=2$ to start. You can use polar coordinates.
    – zhw.
    Nov 28 at 18:18
















Take $y=0$ and $n=2$ to start. You can use polar coordinates.
– zhw.
Nov 28 at 18:18




Take $y=0$ and $n=2$ to start. You can use polar coordinates.
– zhw.
Nov 28 at 18:18










1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Let $nomega_n$ denote the $n-1$ dimensional surface area of the $n-1$-sphere.



Your integrals, respectively, are
$$int_{K_R(y)} |x-y|^alpha , dx= int_0^R int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^R |x-y|^{n+alpha} , dr$$
$$int_{mathbb R^n setminus K_R(y)} |x-y|^alpha , dx= int_R^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_R^infty |x-y|^{n+alpha} , dr$$
$$int_{mathbb R^n} |x-y|^alpha , dx= int_0^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^infty|x-y|^{n+alpha} , dr$$
where $dx$ is the usual $n$-dimensional volume element in the integrals on the left and the $n-1$ dimensional surface area element in the integrals in the middle.



The remaining improper integrals are straight forward to work out.






share|cite|improve this answer





















    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017493%2fhelpfor-what-alpha-do-the-integrals-exist%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Let $nomega_n$ denote the $n-1$ dimensional surface area of the $n-1$-sphere.



    Your integrals, respectively, are
    $$int_{K_R(y)} |x-y|^alpha , dx= int_0^R int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^R |x-y|^{n+alpha} , dr$$
    $$int_{mathbb R^n setminus K_R(y)} |x-y|^alpha , dx= int_R^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_R^infty |x-y|^{n+alpha} , dr$$
    $$int_{mathbb R^n} |x-y|^alpha , dx= int_0^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^infty|x-y|^{n+alpha} , dr$$
    where $dx$ is the usual $n$-dimensional volume element in the integrals on the left and the $n-1$ dimensional surface area element in the integrals in the middle.



    The remaining improper integrals are straight forward to work out.






    share|cite|improve this answer

























      up vote
      1
      down vote



      accepted










      Let $nomega_n$ denote the $n-1$ dimensional surface area of the $n-1$-sphere.



      Your integrals, respectively, are
      $$int_{K_R(y)} |x-y|^alpha , dx= int_0^R int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^R |x-y|^{n+alpha} , dr$$
      $$int_{mathbb R^n setminus K_R(y)} |x-y|^alpha , dx= int_R^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_R^infty |x-y|^{n+alpha} , dr$$
      $$int_{mathbb R^n} |x-y|^alpha , dx= int_0^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^infty|x-y|^{n+alpha} , dr$$
      where $dx$ is the usual $n$-dimensional volume element in the integrals on the left and the $n-1$ dimensional surface area element in the integrals in the middle.



      The remaining improper integrals are straight forward to work out.






      share|cite|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Let $nomega_n$ denote the $n-1$ dimensional surface area of the $n-1$-sphere.



        Your integrals, respectively, are
        $$int_{K_R(y)} |x-y|^alpha , dx= int_0^R int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^R |x-y|^{n+alpha} , dr$$
        $$int_{mathbb R^n setminus K_R(y)} |x-y|^alpha , dx= int_R^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_R^infty |x-y|^{n+alpha} , dr$$
        $$int_{mathbb R^n} |x-y|^alpha , dx= int_0^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^infty|x-y|^{n+alpha} , dr$$
        where $dx$ is the usual $n$-dimensional volume element in the integrals on the left and the $n-1$ dimensional surface area element in the integrals in the middle.



        The remaining improper integrals are straight forward to work out.






        share|cite|improve this answer












        Let $nomega_n$ denote the $n-1$ dimensional surface area of the $n-1$-sphere.



        Your integrals, respectively, are
        $$int_{K_R(y)} |x-y|^alpha , dx= int_0^R int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^R |x-y|^{n+alpha} , dr$$
        $$int_{mathbb R^n setminus K_R(y)} |x-y|^alpha , dx= int_R^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_R^infty |x-y|^{n+alpha} , dr$$
        $$int_{mathbb R^n} |x-y|^alpha , dx= int_0^infty int_{|x-y| = r} |x-y|^alpha , dx , dr = n omega_n int_0^infty|x-y|^{n+alpha} , dr$$
        where $dx$ is the usual $n$-dimensional volume element in the integrals on the left and the $n-1$ dimensional surface area element in the integrals in the middle.



        The remaining improper integrals are straight forward to work out.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered Nov 28 at 21:52









        Umberto P.

        38.3k13063




        38.3k13063






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017493%2fhelpfor-what-alpha-do-the-integrals-exist%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Berounka

            Different font size/position of beamer's navigation symbols template's content depending on regular/plain...

            Sphinx de Gizeh