Projector in Tensorboard python application











up vote
6
down vote

favorite
1












I have the following code and sample which is working fine and exactly I want it to:



import numpy as np
import pandas as pd
import sklearn
import sklearn.preprocessing
import datetime
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector

valid_set_size_percentage = 3
test_set_size_percentage = 3
seq_len = 5 # choose sequence length
df = pd.read_csv("Test.csv", encoding = 'utf-16',sep=',',index_col = 0)
df.head()
def normalize_data(df):
cols = list(df_stock.columns.values)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
df = pd.DataFrame(min_max_scaler.fit_transform(df.values))
df.columns = cols
return df
def load_data(stock, seq_len):
data_raw = stock.as_matrix() # convert to numpy array
data =
print(data_raw.shape)
for index in range(len(data_raw) - seq_len):
data.append(data_raw[index: index + seq_len])
data = np.array(data);
valid_set_size = int(np.round(valid_set_size_percentage/100*data.shape[0]));
test_set_size = int(np.round(test_set_size_percentage/100*data.shape[0]));
train_set_size = data.shape[0] - (valid_set_size + test_set_size);
x_train = data[:train_set_size,:-1,:]
y_train = data[:train_set_size,-1,:4]
x_valid = data[train_set_size:train_set_size+valid_set_size,:-1,:]
y_valid = data[train_set_size:train_set_size+valid_set_size,-1,:4]
x_test = data[train_set_size+valid_set_size:,:-1,:]
y_test = data[train_set_size+valid_set_size:,-1,:4]
return [x_train, y_train, x_valid, y_valid, x_test, y_test]
df_stock = df.copy()
cols = list(df_stock.columns.values)
print('df_stock.columns.values = ', cols)
df_stock_norm = df_stock.copy()
df_stock_norm = normalize_data(df_stock_norm)
x_train, y_train, x_valid, y_valid, x_test, y_test = load_data(df_stock_norm, seq_len)
print(y_train[:2])
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ', y_train.shape)
print('Inputs = ',x_train.shape[2])
print('Outputs = ', y_train.shape[1])
print('x_valid.shape = ',x_valid.shape)
print('y_valid.shape = ', y_valid.shape)
print('x_test.shape = ', x_test.shape)
print('y_test.shape = ',y_test.shape)
index_in_epoch = 0;
perm_array = np.arange(x_train.shape[0])
np.random.shuffle(perm_array)
def get_next_batch(batch_size):
global index_in_epoch, x_train, perm_array
if index_in_epoch > x_train.shape[0]:
start = 0 # start next epoch
index_in_epoch = 0#batch_size
start = index_in_epoch
index_in_epoch += batch_size
end = index_in_epoch
return x_train[perm_array[start:end]], y_train[perm_array[start:end]]
n_steps = seq_len -1
n_inputs = x_train.shape[2]
n_neurons = 100
n_outputs = y_train.shape[-1]
n_layers = 2
learning_rate = 0.001
batch_size =10
n_epochs = 100
train_set_size = x_train.shape[0]
test_set_size = x_test.shape[0]

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])


layers = [tf.contrib.rnn.LSTMCell(num_units=n_neurons,
activation=tf.nn.leaky_relu, use_peepholes = True)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)

outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])

outputs = outputs[:,n_steps-1,:] # keep only last output of sequence

loss = tf.reduce_mean(tf.squared_difference(outputs, y)) # loss function = mean squared error

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch

sess.run(training_op, feed_dict={X: x_batch, y: y_batch})

if iteration % int(1*train_set_size/batch_size) == 0:

mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})

print('%.2f epochs: MSE train/valid/test = %.3f/%.3f/%.3f'%(
iteration*batch_size/train_set_size, mse_train, mse_valid,mse_test))
try:
save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")
except Exception as e:
print(e)
if not os.path.exists("modelfile\"):
os.makedirs("modelfile\")

save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")


The following is my sample what I am trying to execute:
Same data Please click and see



I am willing to add the Projector of the Tensorboard in my code. But I could not understand how I can make it. I want to visualize the different inputs I am giving for my training. I am supplying the following columns and trying to predict the ohlc values.



'o', 'h', 'l', 'c', 'rel1', 'rel2', 'rel3', 'rel4', 'rel5', 'rel6', 'rel7', 'rel8'  


I want to visualize the above columns in the projector to know how they are relating with each other to give me the output.

Please let me know what I can do to get what I am willing to.



EDITED:



I have tried something as follows but cannot see the projector tab:



tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])

symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')
embed_matrix = tf.Variable(
tf.random_uniform([1, n_inputs],0.0, 1.0),
name="embed_matrix"
)
stacked_symbols = tf.tile(symbols, [batch_size,n_steps], name='stacked_stock_labels')
stacked_embeds = tf.nn.embedding_lookup(embed_matrix, stacked_symbols)
# stacked_embeds = tf.nn.embedding_lookup(embed_matrix)

# After concat, inputs.shape = (batch_size, num_steps, input_size + embed_size)
inputs_with_embed = tf.concat([X, stacked_embeds], axis=2, name="inputs_with_embed")
embed_matrix_summ = tf.summary.histogram("embed_matrix", embed_matrix)


And edited the following lines in the session code:



merged_sum = tf.summary.merge_all()
global_step = 0
# Set up the logs folder
writer = tf.summary.FileWriter('logs')
writer.add_graph(sess.graph)
projector_config = projector.ProjectorConfig()

# You can add multiple embeddings. Here we add only one.
added_embed = projector_config.embeddings.add()
added_embed.tensor_name = embed_matrix.name
# Link this tensor to its metadata file (e.g. labels).
shutil.copyfile("logs\metadata.tsv",
"logs\metadata1.tsv")
added_embed.metadata_path = "metadata.tsv"

# The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard will
# read this file during startup.
projector.visualize_embeddings(writer, projector_config)
sess.run(tf.global_variables_initializer())
if iteration % int(1*train_set_size/batch_size) == 0:
global_step += 1
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
_,train_merge = sess.run([outputs,merged_sum], feed_dict={X: x_train, y: y_train})
writer.add_summary(train_merge, global_step=global_step)


Here is teh metadata.tsv file

Please let me know what I missed.










share|improve this question
























  • I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
    – solver149
    Nov 27 at 20:48












  • @solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
    – Jaffer Wilson
    Nov 29 at 5:00















up vote
6
down vote

favorite
1












I have the following code and sample which is working fine and exactly I want it to:



import numpy as np
import pandas as pd
import sklearn
import sklearn.preprocessing
import datetime
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector

valid_set_size_percentage = 3
test_set_size_percentage = 3
seq_len = 5 # choose sequence length
df = pd.read_csv("Test.csv", encoding = 'utf-16',sep=',',index_col = 0)
df.head()
def normalize_data(df):
cols = list(df_stock.columns.values)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
df = pd.DataFrame(min_max_scaler.fit_transform(df.values))
df.columns = cols
return df
def load_data(stock, seq_len):
data_raw = stock.as_matrix() # convert to numpy array
data =
print(data_raw.shape)
for index in range(len(data_raw) - seq_len):
data.append(data_raw[index: index + seq_len])
data = np.array(data);
valid_set_size = int(np.round(valid_set_size_percentage/100*data.shape[0]));
test_set_size = int(np.round(test_set_size_percentage/100*data.shape[0]));
train_set_size = data.shape[0] - (valid_set_size + test_set_size);
x_train = data[:train_set_size,:-1,:]
y_train = data[:train_set_size,-1,:4]
x_valid = data[train_set_size:train_set_size+valid_set_size,:-1,:]
y_valid = data[train_set_size:train_set_size+valid_set_size,-1,:4]
x_test = data[train_set_size+valid_set_size:,:-1,:]
y_test = data[train_set_size+valid_set_size:,-1,:4]
return [x_train, y_train, x_valid, y_valid, x_test, y_test]
df_stock = df.copy()
cols = list(df_stock.columns.values)
print('df_stock.columns.values = ', cols)
df_stock_norm = df_stock.copy()
df_stock_norm = normalize_data(df_stock_norm)
x_train, y_train, x_valid, y_valid, x_test, y_test = load_data(df_stock_norm, seq_len)
print(y_train[:2])
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ', y_train.shape)
print('Inputs = ',x_train.shape[2])
print('Outputs = ', y_train.shape[1])
print('x_valid.shape = ',x_valid.shape)
print('y_valid.shape = ', y_valid.shape)
print('x_test.shape = ', x_test.shape)
print('y_test.shape = ',y_test.shape)
index_in_epoch = 0;
perm_array = np.arange(x_train.shape[0])
np.random.shuffle(perm_array)
def get_next_batch(batch_size):
global index_in_epoch, x_train, perm_array
if index_in_epoch > x_train.shape[0]:
start = 0 # start next epoch
index_in_epoch = 0#batch_size
start = index_in_epoch
index_in_epoch += batch_size
end = index_in_epoch
return x_train[perm_array[start:end]], y_train[perm_array[start:end]]
n_steps = seq_len -1
n_inputs = x_train.shape[2]
n_neurons = 100
n_outputs = y_train.shape[-1]
n_layers = 2
learning_rate = 0.001
batch_size =10
n_epochs = 100
train_set_size = x_train.shape[0]
test_set_size = x_test.shape[0]

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])


layers = [tf.contrib.rnn.LSTMCell(num_units=n_neurons,
activation=tf.nn.leaky_relu, use_peepholes = True)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)

outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])

outputs = outputs[:,n_steps-1,:] # keep only last output of sequence

loss = tf.reduce_mean(tf.squared_difference(outputs, y)) # loss function = mean squared error

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch

sess.run(training_op, feed_dict={X: x_batch, y: y_batch})

if iteration % int(1*train_set_size/batch_size) == 0:

mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})

print('%.2f epochs: MSE train/valid/test = %.3f/%.3f/%.3f'%(
iteration*batch_size/train_set_size, mse_train, mse_valid,mse_test))
try:
save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")
except Exception as e:
print(e)
if not os.path.exists("modelfile\"):
os.makedirs("modelfile\")

save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")


The following is my sample what I am trying to execute:
Same data Please click and see



I am willing to add the Projector of the Tensorboard in my code. But I could not understand how I can make it. I want to visualize the different inputs I am giving for my training. I am supplying the following columns and trying to predict the ohlc values.



'o', 'h', 'l', 'c', 'rel1', 'rel2', 'rel3', 'rel4', 'rel5', 'rel6', 'rel7', 'rel8'  


I want to visualize the above columns in the projector to know how they are relating with each other to give me the output.

Please let me know what I can do to get what I am willing to.



EDITED:



I have tried something as follows but cannot see the projector tab:



tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])

symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')
embed_matrix = tf.Variable(
tf.random_uniform([1, n_inputs],0.0, 1.0),
name="embed_matrix"
)
stacked_symbols = tf.tile(symbols, [batch_size,n_steps], name='stacked_stock_labels')
stacked_embeds = tf.nn.embedding_lookup(embed_matrix, stacked_symbols)
# stacked_embeds = tf.nn.embedding_lookup(embed_matrix)

# After concat, inputs.shape = (batch_size, num_steps, input_size + embed_size)
inputs_with_embed = tf.concat([X, stacked_embeds], axis=2, name="inputs_with_embed")
embed_matrix_summ = tf.summary.histogram("embed_matrix", embed_matrix)


And edited the following lines in the session code:



merged_sum = tf.summary.merge_all()
global_step = 0
# Set up the logs folder
writer = tf.summary.FileWriter('logs')
writer.add_graph(sess.graph)
projector_config = projector.ProjectorConfig()

# You can add multiple embeddings. Here we add only one.
added_embed = projector_config.embeddings.add()
added_embed.tensor_name = embed_matrix.name
# Link this tensor to its metadata file (e.g. labels).
shutil.copyfile("logs\metadata.tsv",
"logs\metadata1.tsv")
added_embed.metadata_path = "metadata.tsv"

# The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard will
# read this file during startup.
projector.visualize_embeddings(writer, projector_config)
sess.run(tf.global_variables_initializer())
if iteration % int(1*train_set_size/batch_size) == 0:
global_step += 1
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
_,train_merge = sess.run([outputs,merged_sum], feed_dict={X: x_train, y: y_train})
writer.add_summary(train_merge, global_step=global_step)


Here is teh metadata.tsv file

Please let me know what I missed.










share|improve this question
























  • I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
    – solver149
    Nov 27 at 20:48












  • @solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
    – Jaffer Wilson
    Nov 29 at 5:00













up vote
6
down vote

favorite
1









up vote
6
down vote

favorite
1






1





I have the following code and sample which is working fine and exactly I want it to:



import numpy as np
import pandas as pd
import sklearn
import sklearn.preprocessing
import datetime
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector

valid_set_size_percentage = 3
test_set_size_percentage = 3
seq_len = 5 # choose sequence length
df = pd.read_csv("Test.csv", encoding = 'utf-16',sep=',',index_col = 0)
df.head()
def normalize_data(df):
cols = list(df_stock.columns.values)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
df = pd.DataFrame(min_max_scaler.fit_transform(df.values))
df.columns = cols
return df
def load_data(stock, seq_len):
data_raw = stock.as_matrix() # convert to numpy array
data =
print(data_raw.shape)
for index in range(len(data_raw) - seq_len):
data.append(data_raw[index: index + seq_len])
data = np.array(data);
valid_set_size = int(np.round(valid_set_size_percentage/100*data.shape[0]));
test_set_size = int(np.round(test_set_size_percentage/100*data.shape[0]));
train_set_size = data.shape[0] - (valid_set_size + test_set_size);
x_train = data[:train_set_size,:-1,:]
y_train = data[:train_set_size,-1,:4]
x_valid = data[train_set_size:train_set_size+valid_set_size,:-1,:]
y_valid = data[train_set_size:train_set_size+valid_set_size,-1,:4]
x_test = data[train_set_size+valid_set_size:,:-1,:]
y_test = data[train_set_size+valid_set_size:,-1,:4]
return [x_train, y_train, x_valid, y_valid, x_test, y_test]
df_stock = df.copy()
cols = list(df_stock.columns.values)
print('df_stock.columns.values = ', cols)
df_stock_norm = df_stock.copy()
df_stock_norm = normalize_data(df_stock_norm)
x_train, y_train, x_valid, y_valid, x_test, y_test = load_data(df_stock_norm, seq_len)
print(y_train[:2])
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ', y_train.shape)
print('Inputs = ',x_train.shape[2])
print('Outputs = ', y_train.shape[1])
print('x_valid.shape = ',x_valid.shape)
print('y_valid.shape = ', y_valid.shape)
print('x_test.shape = ', x_test.shape)
print('y_test.shape = ',y_test.shape)
index_in_epoch = 0;
perm_array = np.arange(x_train.shape[0])
np.random.shuffle(perm_array)
def get_next_batch(batch_size):
global index_in_epoch, x_train, perm_array
if index_in_epoch > x_train.shape[0]:
start = 0 # start next epoch
index_in_epoch = 0#batch_size
start = index_in_epoch
index_in_epoch += batch_size
end = index_in_epoch
return x_train[perm_array[start:end]], y_train[perm_array[start:end]]
n_steps = seq_len -1
n_inputs = x_train.shape[2]
n_neurons = 100
n_outputs = y_train.shape[-1]
n_layers = 2
learning_rate = 0.001
batch_size =10
n_epochs = 100
train_set_size = x_train.shape[0]
test_set_size = x_test.shape[0]

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])


layers = [tf.contrib.rnn.LSTMCell(num_units=n_neurons,
activation=tf.nn.leaky_relu, use_peepholes = True)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)

outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])

outputs = outputs[:,n_steps-1,:] # keep only last output of sequence

loss = tf.reduce_mean(tf.squared_difference(outputs, y)) # loss function = mean squared error

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch

sess.run(training_op, feed_dict={X: x_batch, y: y_batch})

if iteration % int(1*train_set_size/batch_size) == 0:

mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})

print('%.2f epochs: MSE train/valid/test = %.3f/%.3f/%.3f'%(
iteration*batch_size/train_set_size, mse_train, mse_valid,mse_test))
try:
save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")
except Exception as e:
print(e)
if not os.path.exists("modelfile\"):
os.makedirs("modelfile\")

save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")


The following is my sample what I am trying to execute:
Same data Please click and see



I am willing to add the Projector of the Tensorboard in my code. But I could not understand how I can make it. I want to visualize the different inputs I am giving for my training. I am supplying the following columns and trying to predict the ohlc values.



'o', 'h', 'l', 'c', 'rel1', 'rel2', 'rel3', 'rel4', 'rel5', 'rel6', 'rel7', 'rel8'  


I want to visualize the above columns in the projector to know how they are relating with each other to give me the output.

Please let me know what I can do to get what I am willing to.



EDITED:



I have tried something as follows but cannot see the projector tab:



tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])

symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')
embed_matrix = tf.Variable(
tf.random_uniform([1, n_inputs],0.0, 1.0),
name="embed_matrix"
)
stacked_symbols = tf.tile(symbols, [batch_size,n_steps], name='stacked_stock_labels')
stacked_embeds = tf.nn.embedding_lookup(embed_matrix, stacked_symbols)
# stacked_embeds = tf.nn.embedding_lookup(embed_matrix)

# After concat, inputs.shape = (batch_size, num_steps, input_size + embed_size)
inputs_with_embed = tf.concat([X, stacked_embeds], axis=2, name="inputs_with_embed")
embed_matrix_summ = tf.summary.histogram("embed_matrix", embed_matrix)


And edited the following lines in the session code:



merged_sum = tf.summary.merge_all()
global_step = 0
# Set up the logs folder
writer = tf.summary.FileWriter('logs')
writer.add_graph(sess.graph)
projector_config = projector.ProjectorConfig()

# You can add multiple embeddings. Here we add only one.
added_embed = projector_config.embeddings.add()
added_embed.tensor_name = embed_matrix.name
# Link this tensor to its metadata file (e.g. labels).
shutil.copyfile("logs\metadata.tsv",
"logs\metadata1.tsv")
added_embed.metadata_path = "metadata.tsv"

# The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard will
# read this file during startup.
projector.visualize_embeddings(writer, projector_config)
sess.run(tf.global_variables_initializer())
if iteration % int(1*train_set_size/batch_size) == 0:
global_step += 1
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
_,train_merge = sess.run([outputs,merged_sum], feed_dict={X: x_train, y: y_train})
writer.add_summary(train_merge, global_step=global_step)


Here is teh metadata.tsv file

Please let me know what I missed.










share|improve this question















I have the following code and sample which is working fine and exactly I want it to:



import numpy as np
import pandas as pd
import sklearn
import sklearn.preprocessing
import datetime
import os
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib.tensorboard.plugins import projector

valid_set_size_percentage = 3
test_set_size_percentage = 3
seq_len = 5 # choose sequence length
df = pd.read_csv("Test.csv", encoding = 'utf-16',sep=',',index_col = 0)
df.head()
def normalize_data(df):
cols = list(df_stock.columns.values)
min_max_scaler = sklearn.preprocessing.MinMaxScaler()
df = pd.DataFrame(min_max_scaler.fit_transform(df.values))
df.columns = cols
return df
def load_data(stock, seq_len):
data_raw = stock.as_matrix() # convert to numpy array
data =
print(data_raw.shape)
for index in range(len(data_raw) - seq_len):
data.append(data_raw[index: index + seq_len])
data = np.array(data);
valid_set_size = int(np.round(valid_set_size_percentage/100*data.shape[0]));
test_set_size = int(np.round(test_set_size_percentage/100*data.shape[0]));
train_set_size = data.shape[0] - (valid_set_size + test_set_size);
x_train = data[:train_set_size,:-1,:]
y_train = data[:train_set_size,-1,:4]
x_valid = data[train_set_size:train_set_size+valid_set_size,:-1,:]
y_valid = data[train_set_size:train_set_size+valid_set_size,-1,:4]
x_test = data[train_set_size+valid_set_size:,:-1,:]
y_test = data[train_set_size+valid_set_size:,-1,:4]
return [x_train, y_train, x_valid, y_valid, x_test, y_test]
df_stock = df.copy()
cols = list(df_stock.columns.values)
print('df_stock.columns.values = ', cols)
df_stock_norm = df_stock.copy()
df_stock_norm = normalize_data(df_stock_norm)
x_train, y_train, x_valid, y_valid, x_test, y_test = load_data(df_stock_norm, seq_len)
print(y_train[:2])
print('x_train.shape = ',x_train.shape)
print('y_train.shape = ', y_train.shape)
print('Inputs = ',x_train.shape[2])
print('Outputs = ', y_train.shape[1])
print('x_valid.shape = ',x_valid.shape)
print('y_valid.shape = ', y_valid.shape)
print('x_test.shape = ', x_test.shape)
print('y_test.shape = ',y_test.shape)
index_in_epoch = 0;
perm_array = np.arange(x_train.shape[0])
np.random.shuffle(perm_array)
def get_next_batch(batch_size):
global index_in_epoch, x_train, perm_array
if index_in_epoch > x_train.shape[0]:
start = 0 # start next epoch
index_in_epoch = 0#batch_size
start = index_in_epoch
index_in_epoch += batch_size
end = index_in_epoch
return x_train[perm_array[start:end]], y_train[perm_array[start:end]]
n_steps = seq_len -1
n_inputs = x_train.shape[2]
n_neurons = 100
n_outputs = y_train.shape[-1]
n_layers = 2
learning_rate = 0.001
batch_size =10
n_epochs = 100
train_set_size = x_train.shape[0]
test_set_size = x_test.shape[0]

tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])


layers = [tf.contrib.rnn.LSTMCell(num_units=n_neurons,
activation=tf.nn.leaky_relu, use_peepholes = True)
for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)
rnn_outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, X, dtype=tf.float32)
stacked_rnn_outputs = tf.reshape(rnn_outputs, [-1, n_neurons])
stacked_outputs = tf.layers.dense(stacked_rnn_outputs, n_outputs)

outputs = tf.reshape(stacked_outputs, [-1, n_steps, n_outputs])

outputs = outputs[:,n_steps-1,:] # keep only last output of sequence

loss = tf.reduce_mean(tf.squared_difference(outputs, y)) # loss function = mean squared error

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss)
saver = tf.train.Saver()

with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for iteration in range(int(n_epochs*train_set_size/batch_size)):
x_batch, y_batch = get_next_batch(batch_size) # fetch the next training batch

sess.run(training_op, feed_dict={X: x_batch, y: y_batch})

if iteration % int(1*train_set_size/batch_size) == 0:

mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})

print('%.2f epochs: MSE train/valid/test = %.3f/%.3f/%.3f'%(
iteration*batch_size/train_set_size, mse_train, mse_valid,mse_test))
try:
save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")
except Exception as e:
print(e)
if not os.path.exists("modelfile\"):
os.makedirs("modelfile\")

save_path = saver.save(sess, "modelfile\model"+str(iteration)+".ckpt")


The following is my sample what I am trying to execute:
Same data Please click and see



I am willing to add the Projector of the Tensorboard in my code. But I could not understand how I can make it. I want to visualize the different inputs I am giving for my training. I am supplying the following columns and trying to predict the ohlc values.



'o', 'h', 'l', 'c', 'rel1', 'rel2', 'rel3', 'rel4', 'rel5', 'rel6', 'rel7', 'rel8'  


I want to visualize the above columns in the projector to know how they are relating with each other to give me the output.

Please let me know what I can do to get what I am willing to.



EDITED:



I have tried something as follows but cannot see the projector tab:



tf.reset_default_graph()

X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None,n_outputs])

symbols = tf.placeholder(tf.int32, [None, 1], name='stock_labels')
embed_matrix = tf.Variable(
tf.random_uniform([1, n_inputs],0.0, 1.0),
name="embed_matrix"
)
stacked_symbols = tf.tile(symbols, [batch_size,n_steps], name='stacked_stock_labels')
stacked_embeds = tf.nn.embedding_lookup(embed_matrix, stacked_symbols)
# stacked_embeds = tf.nn.embedding_lookup(embed_matrix)

# After concat, inputs.shape = (batch_size, num_steps, input_size + embed_size)
inputs_with_embed = tf.concat([X, stacked_embeds], axis=2, name="inputs_with_embed")
embed_matrix_summ = tf.summary.histogram("embed_matrix", embed_matrix)


And edited the following lines in the session code:



merged_sum = tf.summary.merge_all()
global_step = 0
# Set up the logs folder
writer = tf.summary.FileWriter('logs')
writer.add_graph(sess.graph)
projector_config = projector.ProjectorConfig()

# You can add multiple embeddings. Here we add only one.
added_embed = projector_config.embeddings.add()
added_embed.tensor_name = embed_matrix.name
# Link this tensor to its metadata file (e.g. labels).
shutil.copyfile("logs\metadata.tsv",
"logs\metadata1.tsv")
added_embed.metadata_path = "metadata.tsv"

# The next line writes a projector_config.pbtxt in the LOG_DIR. TensorBoard will
# read this file during startup.
projector.visualize_embeddings(writer, projector_config)
sess.run(tf.global_variables_initializer())
if iteration % int(1*train_set_size/batch_size) == 0:
global_step += 1
mse_train = loss.eval(feed_dict={X: x_train, y: y_train})
mse_valid = loss.eval(feed_dict={X: x_valid, y: y_valid})
mse_test = loss.eval(feed_dict={X: x_test, y: y_test})
_,train_merge = sess.run([outputs,merged_sum], feed_dict={X: x_train, y: y_train})
writer.add_summary(train_merge, global_step=global_step)


Here is teh metadata.tsv file

Please let me know what I missed.







python python-3.x tensorflow visualization tensorboard






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 22 at 9:58

























asked Nov 22 at 7:41









Jaffer Wilson

2,78232547




2,78232547












  • I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
    – solver149
    Nov 27 at 20:48












  • @solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
    – Jaffer Wilson
    Nov 29 at 5:00


















  • I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
    – solver149
    Nov 27 at 20:48












  • @solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
    – Jaffer Wilson
    Nov 29 at 5:00
















I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
– solver149
Nov 27 at 20:48






I believe the projector is used to watch how the samples/examples are represented in the condensed latent space. Your question asks on how different columns can be viewed. If you are looking to find which node has greater impact, then you must be chasing after gradients and not projector.
– solver149
Nov 27 at 20:48














@solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
– Jaffer Wilson
Nov 29 at 5:00




@solver149 May be your suggestion is good sir. But how I can implant it in my scenario. I am confused with it. And after your suggestion I am more confused. Please help me.
– Jaffer Wilson
Nov 29 at 5:00

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53426033%2fprojector-in-tensorboard-python-application%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53426033%2fprojector-in-tensorboard-python-application%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Berounka

Sphinx de Gizeh

Different font size/position of beamer's navigation symbols template's content depending on regular/plain...