Several definitions of projective varieties
up vote
0
down vote
favorite
I am working on projective varieties and I am a little bit lost. Considering a local ring (in general a field) I think that $P^n(R)$ is the set of tuples $(x_0,...,x_n)$ with $x_i in R$ and some $x_j$ invertible modulo the equivalence relation:
$(x_0,....,x_n) equiv (y_0,...,y_n)$ means $exists , alpha in R$ invertible such that $x_i = alpha , y_i$ with $ 1 leq i leq n$. I am working on Algebraic Geometry $1$ realised by Ulrich Gortz and Torsten Wedhorn here a link of this book. I am trying to realise exercise $4.6$ (page $115$) whose aim is to prove this fact. For me it was a definition of a projective space over a local ring, so I am confused. Did I miss something? Is there another definition I don't know?
Thanks!
geometry algebraic-geometry
add a comment |
up vote
0
down vote
favorite
I am working on projective varieties and I am a little bit lost. Considering a local ring (in general a field) I think that $P^n(R)$ is the set of tuples $(x_0,...,x_n)$ with $x_i in R$ and some $x_j$ invertible modulo the equivalence relation:
$(x_0,....,x_n) equiv (y_0,...,y_n)$ means $exists , alpha in R$ invertible such that $x_i = alpha , y_i$ with $ 1 leq i leq n$. I am working on Algebraic Geometry $1$ realised by Ulrich Gortz and Torsten Wedhorn here a link of this book. I am trying to realise exercise $4.6$ (page $115$) whose aim is to prove this fact. For me it was a definition of a projective space over a local ring, so I am confused. Did I miss something? Is there another definition I don't know?
Thanks!
geometry algebraic-geometry
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I am working on projective varieties and I am a little bit lost. Considering a local ring (in general a field) I think that $P^n(R)$ is the set of tuples $(x_0,...,x_n)$ with $x_i in R$ and some $x_j$ invertible modulo the equivalence relation:
$(x_0,....,x_n) equiv (y_0,...,y_n)$ means $exists , alpha in R$ invertible such that $x_i = alpha , y_i$ with $ 1 leq i leq n$. I am working on Algebraic Geometry $1$ realised by Ulrich Gortz and Torsten Wedhorn here a link of this book. I am trying to realise exercise $4.6$ (page $115$) whose aim is to prove this fact. For me it was a definition of a projective space over a local ring, so I am confused. Did I miss something? Is there another definition I don't know?
Thanks!
geometry algebraic-geometry
I am working on projective varieties and I am a little bit lost. Considering a local ring (in general a field) I think that $P^n(R)$ is the set of tuples $(x_0,...,x_n)$ with $x_i in R$ and some $x_j$ invertible modulo the equivalence relation:
$(x_0,....,x_n) equiv (y_0,...,y_n)$ means $exists , alpha in R$ invertible such that $x_i = alpha , y_i$ with $ 1 leq i leq n$. I am working on Algebraic Geometry $1$ realised by Ulrich Gortz and Torsten Wedhorn here a link of this book. I am trying to realise exercise $4.6$ (page $115$) whose aim is to prove this fact. For me it was a definition of a projective space over a local ring, so I am confused. Did I miss something? Is there another definition I don't know?
Thanks!
geometry algebraic-geometry
geometry algebraic-geometry
edited Nov 28 at 22:11
asked Nov 28 at 22:01
user1123313131
13
13
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017789%2fseveral-definitions-of-projective-varieties%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3017789%2fseveral-definitions-of-projective-varieties%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown